红外与激光工程, 2017, 46 (8): 0822002, 网络出版: 2017-11-07  

纯硅芯光纤的空间辐照环境适应性

Space radiation applicability of pure silicon-core optical fibers
作者单位
中国空间技术研究院, 北京100094
摘要
研究了光纤的辐照损伤机理, 对纯硅芯光纤与传统芯层掺杂光纤的结构特点进行了系统地分析, 从结构组成特点上分析了两者的抗辐照性能差异。研究了国内外关于光纤的抗辐照试验标准, 对各标准中剂量率、总剂量等试验条件差异进行了对比, 并对不同剂量率对光纤辐照试验结果的影响进行了分析, 给出了光纤在空间辐照环境条件下应用的γ辐照试验条件的选择原则。最后, 采用0.1 rad(Si)/s剂量率对某国产纯硅芯光纤的抗辐照性能进行了试验评估, 光纤在20 k rad(Si)总剂量辐照后光纤损耗为1.934 dB/km。空间辐照性能评估结果满足该项目的宇航型号的空间环境使用需求, 辐照评估结论为可用。
Abstract
The mechanism of the radiation-induced loss in optical fibers was researched in this paper. Firstly, the structure characteristics of the pure silicon core optical fibers and traditional doped silica-core optical fibers were systematically analyzed. According to their structure characteristics, the difference of the resistance to radiation between the pure silicon core optical fibers and traditional doped silica-core optical fibers was studied. Secondly, the experimental conditions of anti-radiation standards at home and abroad were investigated. The experimental conditions including the dose rate and total dose used as anti-radiation standards had been compared. The effect of different radiation dose rates on the radiation experiments of optical fibers was analyzed. The selection principle of gamma radiation experimental conditions used in space radiation environments for fibers was given. Finally, the anti-radiation properties of a domestic pure silicon-core optical fiber with the dose rate of 0.1 rad(Si)/s were estimated, and the fiber loss after the radiation with the total dose of 20 k rad(Si) was 1.934 dB/km. The assessment results of the space radiation performances satisfied the needs of space environments for the aerospace model in the project, and the conclusion of the radiation assessment was available.
参考文献

[1] 孙茜, 封皓, 曾周末.基于图像处理的光纤预警系统模式识别[J]. 光学 精密工程, 2015, 23(2): 334-341.

    Sun Qian, Feng Hao, Zeng Zhoumo. Recognition of optical fiber pre-warning system based on image processing[J]. Optics and Precision Engineering, 2015, 23(2): 334-341. (in Chinese)

[2] 张达, 徐抒岩. 高速CCD图像数据光纤传输系统[J]. 光学精密工程, 2009, 17(3): 669-675.

    Zhang Da, Xu Shuyan. High-speed CCD image data fiber transmission system[J]. Optics and Precision Engineering, 2009, 17(3): 669-675. (in Chinese)

[3] 王学勤, 张春焘, 金靖, 等.空间用特种光纤的辐射致衰减效应[J]. 红外与激光工程, 2011, 40(12): 2516-2520.

    Wang Xueqin, Zhang Chunxi, Jin Jing, et al. Radiation induced attenuation effect on special optical fibers applied in space [J]. Infrared and Laser Engineering, 2011, 40(12): 2516-2520. (in Chinese)

[4] 刘福华, 安毓英, 王平, 等. 脉冲γ射线对光纤的辐射感生损耗[J]. 红外与激光工程, 2013, 42(4): 1056-1062.

    Liu Fuhua, An Yuying, Wang Ping, et al. Radiation-induced loss of pulsed γ-ray on optical fibers [J]. Infrared and Laser Engineering, 2013, 42(4): 1056-1062.(in Chinese)

[5] 刘福华, 王平, 冯刚, 等. γ辐射对光纤色散的影响[J]. 红外与激光工程, 2016, 45(1): 0118001.

    Liu Fuhua, Wang Ping, Feng Gang, et al. Influence of Gamma-ray radiation on optical fiber dispersion [J]. Infrared and Laser Engineering, 2016, 45(1): 0118001. (in Chinese)

[6] 陶蒙蒙, 杨鹏翎, 刘卫平, 等. 高能激光辐照下光纤布拉格光栅响应特性[J]. 中国光学, 2012, 5(5): 544-549.

    Tao Mengmeng, Yang Pengling, Liu Weiping, et al. Response characteristics of fiber Bragg gratings irradiated by high energy lasers[J]. Chinese Optics, 2012, 5(5): 544-549. (in Chinese)

[7] 王珣, 金春水, 匡尚奇, 等. 极紫外光学器件辐照污染检测技术[J]. 中国光学, 2014, 7(1): 79-88.

    Wang Xun, Jin Chunshui, Kuang Shangqi, et al. Techniques of radiation contamination monitoring for extreme ultraviolet devices[J]. Chinese Optics, 2014, 7(1): 79-88. (in Chinese)

[8] 曹骏. 对纯硅芯光纤的特性分析[D]. 北京: 北京交通大学, 2005: 20-23.

    Cao Jun. The characteristic of pure-silica-core fiber[D]. Beijing: Beijing Jiaotong University, 2005: 20-23. (in Chinese)

[9] 韩艳玲, 肖文, 伊小素, 等.辐照光纤的主动恢复效应[J]. 红外与激光工程, 2008, 37(1): 128-131.

    Han Yanling, Xiao Wen, Yi Xiaosu, et al. Active recovery effect of irradiation optical fiber [J]. Infrared and Laser Engineering, 2008, 37(1): 128-131. (in Chinese)

[10] Zabezhailov M O. The role of fluorine-doped cladding in radiation induced absorption of silica optical fibers[J].IEEE Transaction on Nuclear Science, 2002, 49(3): 1410-1413.

[11] 邓涛. 石英玻璃及石英光纤的抗辐照性能研究[D]. 武汉: 武汉理工大学, 2010: 85-90.

    Deng Tao. Researches on radiation resistance of silica glass and silica optical fibers[D]. Wuhan: Wuhan University of Technology, 2010: 85-90. (in Chinese)

贾晓, 朱恒静, 张红旗, 毛喜平, 王征, 贾秋阳. 纯硅芯光纤的空间辐照环境适应性[J]. 红外与激光工程, 2017, 46(8): 0822002. Jia Xiao, Zhu Hengjing, Zhang Hongqi, Mao Xiping, Wang Zheng, Jia Qiuyang. Space radiation applicability of pure silicon-core optical fibers[J]. Infrared and Laser Engineering, 2017, 46(8): 0822002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!