Author Affiliations
Abstract
1 Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2 Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #21-01, Connexis South Tower, Singapore 138632, Singapore
3 School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
4 School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
5 Key Laboratory of Bionic Engineering of Ministry of Education, Jilin University, Changchun 130022, China
6 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
7 Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Things, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
8 Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China
9 Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
10 Department of Electrical & Computer Engineering, Boston University, Boston 02215, USA
11 Pengcheng Laboratory, Shenzhen 518055, China
Optical fiber technology has changed the world by enabling extraordinary growth in world-wide communications and sensing. The rapid development and wide deployment of optical fiber sensors are driven by their excellent sensing performance with outstanding flexibility, functionality, and versatility. Notably, the research on specialty optical fibers is playing a critical role in enabling and proliferating the optical fiber sensing applications. This paper overviews recent developments in specialty optical fibers and their sensing applications. The specialty optical fibers are reviewed based on their innovations in special structures, special materials, and technologies to realize lab in/on a fiber. An overview of sensing applications in various fields is presented. The prospects and emerging research areas of specialty optical fibers are also discussed.
specialty optical fibers photonic crystal fiber multifunctional multi-material fibers lab in/on fiber 
Opto-Electronic Science
2023, 2(2): 220025
Author Affiliations
Abstract
Central Research Institute, 2012 Labs, Huawei Technologies, Shenzhen 518129, China
We propose an alternative approach to compensation of intermodal interactions in few-mode optical fibers by means of digital backpropagation. Instead of solving the inverse generalized multimode nonlinear Schrödinger equation, we accomplish backpropagation of the multimode signals with help of their near-field intensity distributions captured by a camera. We demonstrate that this task can successfully be handled by a deep neural network and provide a proof of concept by training an autoencoder for backpropagation of six linearly polarized (LP) modes of a step-index fiber.
optical fibers multimode fibers few-mode fibers digital signal processing space division multiplexing mode division multiplexing mode decomposition 
Chinese Optics Letters
2023, 21(3): 030601
作者单位
摘要
广西电网有限责任公司柳州供电局,广西 柳州 545001
为进一步加强光缆的运行保护,实现光缆线行区域外力破坏隐患的实时监测,文章利用瑞利后向散射和相干检测原理,设计构建了一种基于分布式光纤振动传感的光缆外破事件监测预警系统。利用相位敏感光时域反射仪(Φ-OTDR)技术,实时采集光纤振动信号,提取振动传感关键性特征,并将隐患类型发送至运维工作人员,对外力破坏隐患进行实时定位和预警。现场验证结果表明:系统能够同时检测和定位沿传感光纤的多个振动源,可以识别出多种类型的扰动信号;该监测预警系统体系完善、架构简单,对各类施工信号的识别率高达95%,实现了外破类型和精确位置的双预警,能够有效预防并制止外力破坏事件。
光缆防外破 分布式光纤 光纤传感 监测预警 破坏隐患 anti-breakage of optical cables distributed optical fibers optical fiber sensing monitoring and early warning hidden dangers of damage 
光通信研究
2022, 48(5): 53
作者单位
摘要
1 Institute of Chemistry of the Condensed Matter of Bordeaux (ICMCB), Chemistry Department, 33608 Pessac, France
2 UMR CNRS 7252, Université de Limoges, XLIM, 87060 Limoges, France
3 LP2N, Institut d’Optique Graduate School– CNRS–University of Bordeaux, 33400 Talence, France
Phosphate glasses Neodymium Optical fibers Self-focusing Super-continuum 
Frontiers of Optoelectronics
2022, 15(1): s12200
作者单位
摘要
江苏师范大学物理与电子工程学院,江苏省先进激光材料与器件重点实验室,江苏 徐州 221116

近年来迅速发展的中红外高功率激光技术迫切需要具有输出光束质量高、质量轻、结构紧凑等特性的中红外光纤介质,用于实现激光产生、传输等。在中红外玻璃中,硫系玻璃具有最宽的透光范围;同时,硫系玻璃又具有最高的折射率和非线性折射率系数,因此它们被认为是理想的产生和传输中红外激光的光纤基质。然而,硫系玻璃网络结构由弱化学键组成,使得硫系玻璃光纤具有较低的激光损伤阈值,这与高功率激光应用需求相矛盾。在不牺牲光纤输出光束质量的前提下,大模场光子晶体光纤技术是优选的实现功率提升的技术方案。本文首先介绍了中红外激光的高功率应用需求和中红外光纤材料低激光损伤阈值之间存在的矛盾,继而对面向中红外高功率激光应用的超大模场硫系玻璃光子晶体光纤的发展进行了综述,详细描述了超大模场硫系玻璃光子晶体光纤设计、制备、材料选择、光纤性能表征等过程,并对其应用前景和存在的技术瓶颈进行了讨论和展望。结果表明,超大模场硫系玻璃光子晶体光纤有望被应用于百瓦级中红外高功率激光应用场景中。

激光光学 光子晶体光纤 红外光纤 超连续谱产生 激光传输 
中国激光
2022, 49(1): 0101006
作者单位
摘要
Emerging Technologies and Materials Group, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle, NE1 7RU, UK
Semiconductor optoelectronic fiber technology has seen rapid development in recent years thanks to advancements in fabrication and post-processing techniques. Integrating the optical and electronic functionality of semiconductor materials into a fiber geometry has opened up many possibilities, such as in-fiber frequency generation, signal modulation, photodetection, and solar energy harvesting. This review provides an overview of the stateof- the-art in semiconductor optoelectronic fibers, including fabrication and post-processing methods, materials and their optical properties. The applications in nonlinear optics, optical-electrical conversion, lasers and multimaterial functional fibers will also be highlighted.
optical fibers semiconductor photonics nonlinear optics 
Frontiers of Optoelectronics
2021, 14(4): 383–398
作者单位
摘要
1 华东师范大学 物理与电子科学学院,上海 200241
2 华南理工大学 广东省半导体照明与信息化工程技术研究中心,广州 510641
介质沿空间固定方向均匀分布的结构在电磁导波器件中有十分广泛的应用,对这类器件的分析通常被称为2.5D电磁问题。利用器件在固定方向介质分布均匀的特点,将电磁场量沿该方向进行空间傅里叶变换,可以把对三维问题的分析转化为两维问题求解,从而极大地减小计算开销。针对传统基于差分的2.5D电磁场算法在弯曲形状逼近上有阶梯误差的缺陷,本文提出了基于三角形网格的2.5D时域间断有限元方法(DGTD),并用它模拟了电偶极子与光纤的耦合效率和光子晶体光纤的色散特性。与基于规则网格的2.5D差分方法进行对比。结果表明,文中建立的2.5D DGTD方法对弯曲形状的模拟更加逼真,计算内存占用最大减少10.4%,计算精度最大相差0.011%,计算时间缩短74.9%,计算效率提高。
时域间断有限元 电磁场分析 光纤 discontinuous Galerkin time-domain method 2.5D 2.5-dimensional FDTD FDTD electromagnetic field analysis optical fibers 
强激光与粒子束
2021, 33(7): 073010
Author Affiliations
Abstract
Nanjing University, College of Engineering and Applied Sciences, Nanjing, China
The flat endface of an optical fiber tip is an emerging light-coupled microscopic platform that combines fiber optics with planar micro- and nanotechnologies. Since different materials and structures are integrated onto the endfaces, optical fiber tip devices have miniature sizes, diverse integrated functions, and low insertion losses, making them suitable for all-optical networks. In recent decades, the increasing demand for multifunctional optical fibers has created opportunities to develop various structures on fiber tips. Meanwhile, the unconventional shape of optical fibers presents challenges involving the adaptation of standard planar micro- and nanostructure preparation strategies for fiber tips. In this context, researchers are committed to exploring and optimizing fiber tip manufacturing techniques, thereby paving the way for future integrated all-fiber devices with multifunctional applications. First, we present a broad overview of current fabrication technologies, classified as “top-down,” “bottom-up,” and “material transfer” methods, for patterning optical fiber tips. Next, we review typical structures integrated on fiber tips and their known and potential applications, categorized with respect to functional structure configurations, including “optical functionalization” and “electrical integration.” Finally, we discuss the prospects for future opportunities involving multifunctional integrated fiber tips.
optical fibers fiber tips optical devices nanotechnology micro-optics nano-optics 
Advanced Photonics
2020, 2(6): 064001
作者单位
摘要
1 复旦大学电磁波信息科学教育部重点实验室, 上海 200433
2 军事科学院国防科技创新研究院前沿交叉技术研究中心, 北京 100071
提出一种基于空芯光纤,兼具导电和中远红外传光性能的生物探针,实现波长5~10 μm处光的低损耗传输。采用环烯烃聚合物(COP)对探针前端进行水密封,并对封口工艺进行设计和优化。采用波长5.1 μm的光源测得长度为20 cm、内径/外径(ID/OD)为0.7 mm/1.5 mm探针的损耗为1.38 dB。通过控制封口工艺,制备不同形状的COP封口窗片,实现对输出光束的调控。通过测量不同形状封口窗片的输出光斑,分析探针的焦距及光束远场发散角,为神经科学研究和生物医学应用提供更多的途径和手段。
光学器件 生物探针 中红外 空芯光纤 封口窗片 光束调控 
光学学报
2019, 39(12): 1223004
袁宏伟 1,2,*何巍 1,2张雯 1,2祝连庆 1,2
作者单位
摘要
1 北京信息科技大学 光电测试技术及仪器教育部重点实验室, 北京 100192
2 北京信息科技大学 光纤传感与系统北京实验室, 北京 100016
提出并设计了基于侧边抛磨传感臂结构的光纤Mach-Zehnder干涉结构, 并对其温度传感特性进行了研究。通过将两支分光比为50∶50的1×2端口光纤耦合器相对熔接, 构建光纤Mach-Zehnder干涉结构, 采用单模光纤作为干涉结构的参考臂。基于侧面研磨技术在3m长纤芯/包层尺寸为9/125μm的单模光纤上进行抛光, 抛光时长为5h, 制备了研磨长度为20mm、深度为50μm的光泄露窗作为干涉结构的传感臂, 提高传感器的灵敏度。采用宽带光源对Mach-Zehnder干涉结构的透射光谱进行测试, 干涉周期为0.66nm。实验中对传感结构进行了温度测试及分析, 选取波谷位置为1551.48nm作为测试点。在25~60℃的升温范围内干涉条纹向长波方向移动3.97nm, 传感器的温度灵敏度为115.4pm/℃。不同温度下对应波谷的波长位移量与外界温度呈现良好的线性关系, 线性度为0.9940, 功率漂移小于1.66dB, 具有较好的功率稳定性。
光纤光学 光纤传感器 马赫-曾德尔 侧边抛磨 optical fibers optics optical fiber sensor Mach-Zehnder side polishing 
光学技术
2019, 45(3): 297

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!