中国激光, 2017, 44 (3): 0304001, 网络出版: 2017-03-08   

基于硅基液晶变焦透镜的相位恢复方法

Phase Retrieval Method Based on Liquid Crystal on Silicon Tunable-Lens
作者单位
安徽大学计算智能与信号处理教育部重点实验室, 安徽 合肥 230039
摘要
针对传统的基于光强传输方程(TIE)相位恢复方法中需要通过移动待测物体或者CCD以实现光强图像采集所造成的速度慢、精确度低等问题,提出了一种新的基于硅基液晶(LCOS)变焦透镜的相位恢复方法。首先,在LCOS上加载具有不同焦距的透镜相位分布图,使其实现变焦透镜的功能;然后通过本研究所设计的系统在同一成像平面上采集不同散焦距离的光强图像;最后求解TIE从而得到相位信息。该方法只需要改变LCOS上所加载的相位分布图即可形成不同的散焦图像,避免了传统方法中机械移动所造成的误差。模拟与实验结果均验证了所提方法的正确性和有效性。
Abstract
In traditional phase retrieval method based on transport of intensity equation (TIE), there are problems of slow speed and low accuracy caused by moving the object to be measured or CCD in the process of light intensity images acquisition. In order to solve these problems, a new method using the liquid crystal on silicon (LCOS) as tunable-lens for phase retrieval is proposed in this paper. Firstly, the phase distribution images with different focal lengths are loaded in a LCOS to make it realize the function of tunable-lens. Then the light intensity images of different defocusing distances are collected in the same imaging plane by the designed system in this paper. Finally, the phase information is obtained by solving the TIE. With this method, different defocusing images can be formed by changing the phase distribution image loaded in the LCOS, avoiding the errors caused by mechanical shift. The correctness and effectiveness of the proposed phase retrieval method are verified by the simulation and experimental results.
参考文献

[1] Mir M, Bhaduri B, Wang R, et al. Quantitative phase imaging[J]. Progress in Optics, 2012, 57: 133-217.

[2] 左 超, 陈 钱, 孙佳嵩, 等. 基于光强传输方程的非干涉相位恢复与定量相位显微成像: 文献综述与最新进展[J]. 中国激光, 2016, 43(6): 0609002.

    Zuo Chao, Chen Qian, Sun Jiasong,et al. Non-interferometric phase retrieval and quantitative phase microscopy based on transport of intensity equation: a review[J]. Chinese J Lasers, 2016, 43(6): 0609002.

[3] Kou SS, Waller L, Barbastathis G, et al. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging[J]. Optics Letters, 2010, 35(3): 447-449.

[4] Eisebitt S, Lüning J, Schlotter W F, et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography[J]. Nature, 2004, 432(7019): 885-888.

[5] Marchesini S, He H, Chapman H N, et al. X-ray image reconstruction from a diffraction pattern alone[J]. Physical Review B, 2003, 68(14): 1401011.

[6] Faulkner H M,Rodenburg J M. Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2): 023903.

[7] Shomali R, Darudi A, Nasiri S. Application of irradiance transport equation in aspheric surface testing[J]. Optik, 2012, 123(14): 1282-1286.

[8] 梁言生, 姚保利, 马百恒, 等. 基于纯相位液晶空间光调制器的全息光学捕获与微操纵[J]. 光学学报, 2016, 36(3): 0309001.

    Liang Yansheng, Yao Baoli, Ma Baiheng, et al. Holographic optical trapping and manipulation based on phase-only liquid-crystal spatial light modulator[J]. Acta Optica Sinica, 2016, 36(3): 0309001.

[9] Claas F, Mostafa A, Christoph V K, et al. Phase retrieval by means of a spatial light modulator in the Fourier domain of an imaging system[J]. Applied Optics, 2010, 49(10): 1826-1830.

[10] Almoro P F, Waller L, Agour M, et al. Enhanced deterministic phase retrieval using a partially developed speckle field[J]. Optics Letters, 2012, 37(11): 2088-2090.

[11] Zhu Y H, Shanker A, Tian L, et al. Low-noise phase imaging by hybrid uniform and structured illumination transport of intensity equation[J]. Optics Express, 2014, 22(22): 26696-26711.

[12] Zuo C, Chen Q, Qu W, et al. Noninterferometric single-shot quantitative phase microscopy[J]. Optics Letters, 2013, 38(18): 3538-3541.

[13] Zuo C, Chen Q, Qu W, et al. High-speed transport-of-intensity phase microscopy with an electrically tunable lens[J]. Optics Express, 2013, 21(20): 24060-24075.

[14] 田 淼, 陈 笑, 高云舒, 等. LCoS平面光栅的衍射特性及其在1×N型波长选择开关中的应用[J]. 激光与光电子学进展, 2015, 52(9): 090502.

    Tian Miao, Chen Xiao, GaoYunshu, et al. Diffraction properties of LCoS gratings and its application in 1×N wavelength selective switches[J]. Laser & Optoelectronics Progress, 2015, 52(9): 090502.

[15] Teague M R. Deterministic phase retrieval: a Green′s functionsolution[J]. Journal of the Optical Society of America, 1983, 73(11): 1434-1441.

[16] 程 鸿, 张 芬, 刘凯峰, 等. 基于透镜模型的部分相干光场相位检索技术[J]. 光电子·激光, 2014(11): 2239-2244.

    Cheng Hong, Zhang Fen, Liu Kaifeng, et al. Phase retrieval technology under partially coherent optical field based on lens model[J]. Journal of Optoelectronics·Laser, 2014(11): 2239-2244.

[17] Waller L, Luo Y, Yang S Y, et al. Transport of intensity phase imaging in a volume holographic microscope[J]. Optics Letters, 2010, 35(17): 2961-2963.

[18] 沈 川, 刘凯峰, 张 成, 等. 可编程菲涅耳相位透镜应用于多平面全息投影[J]. 光子学报, 2014, 43(5): 0509002.

    Shen Chuan, Liu Kaifeng, Zhang Cheng, et al. Multi-plane holographic projection using programmable fresnel phase lenses[J]. Acta Photonica Sinica, 2014, 43(5): 0509002.

[19] Etienne C, Pierre M, Christian D.Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms[J]. Applied Optics, 1999, 38(34): 6994-7001.

[20] Fang C, Dai B, Zhuo R, et al. Focal-length-tunable elastomer-based liquid-filled plano-convex mini lens[J]. Optics Letters, 2016, 41(2): 404-407.

程鸿, 吕倩倩, 张文君, 邓会龙, 高要利. 基于硅基液晶变焦透镜的相位恢复方法[J]. 中国激光, 2017, 44(3): 0304001. Cheng Hong, Lü Qianqian, Zhang Wenjun, Deng Huilong, Gao Yaoli. Phase Retrieval Method Based on Liquid Crystal on Silicon Tunable-Lens[J]. Chinese Journal of Lasers, 2017, 44(3): 0304001.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!