红外与激光工程, 2016, 45 (11): 1106004, 网络出版: 2017-01-20   

激光陀螺捷联惯导系统多位置系统级标定方法

Multi-position systematic calibration method for RLG-SINS
作者单位
1 国防科学技术大学 光电科学与工程学院, 湖南 长沙 410073
2 71345部队, 湖南 长沙 410073
摘要
捷联惯导系统的精度受到自身各种误差因素的影响, 需在使用之前进行精确地标定和补偿。为了更加有效地标定误差, 设计了一种10位置系统级标定的方法。利用简化的误差模型和速度误差变化率方程, 建立了所有误差参数与导航误差之间的线性关系。通过设计的10位置连续旋转方案对由各项误差参数引起的速度误差进行充分激励, 利用所得数据进行卡尔曼滤波, 计算出包括陀螺仪和加速度计的零偏、标度因数误差、安装误差以及加速度计二次项误差等24个误差参数。仿真得到陀螺零偏误差优于0.000 75(°)/h, 加速度计零偏误差优于5 ?滋g, 陀螺和加速度计的安装角误差优于1.5″, 标度因数误差优于2 ppm(1 ppm=10-6)系统, 加速度计二次项误差优于0.15×10-6 s2/m。另通过3组实验验证了重复性, 证明了该方法确实有效。
Abstract
The accuracy of strapdown inertial navigation system(SINS) is affected by many error parameters. So it should be calibrated and compensated before put into service. For calibrating error parameters more efficiently, a ten-position systematic calibration method was designed. Firstly, through a simplified error parameter model and the equation of velocity error gradient, linear relationships between navigation errors and all error parameters were established. Secondly, because of the velocity error through designed ten-position consecutive rotation plan, the data of gyros and accelerometers were used to calculate all twenty-four error parameters using Kalman filtering method. In addition, this method was simple and feasible. Through the simulation, gyro bias errors are lower than 0.000 75(°)/h; accelerometer bias errors are within 5 ?滋g; installation angle errors of gyros and accelerometers are better than 1.5″, scale errors are better than 2 ppm, accelerometer quadratic term is better than 0.15×10-6 s2/m. Through three groups of experiments, the repeatability of the method is verified, and the method is proved useful.
参考文献

[1] Savage P G. Strapdown Analytics[M]. Maple Plain, Minnesota: Strapdown Associates, Inc, 2007.

[2] 杨晓霞, 黄一. 外场标定条件下捷联惯导系统误差状态可观测性分析[J]. 中国惯性技术学报, 2008, 16(6): 657-664.

    Yang Xiaoxia, Huang Yi. Observability analysis for error states of SINS under outer field conditions[J]. Journal of Chinese Inertial Technology, 2008, 16(6): 657-664. (in Chinese)

[3] 谢波, 秦永元, 万彦辉. 激光陀螺捷联惯导系统多位置标定方法[J]. 中国惯性技术学报, 2011, 19(2): 157-162, 169.

    Xie Bo, Qin Yongyuan, Wan Yanhui. Multiposition calibration method of laser gyro SINS[J]. Journal of Chinese Inertial Technology, 2011, 19(2): 157-162, 169. (in Chinese)

[4] 吴赛成. 船用高精度激光陀螺姿态测量系统关键技术研究[D]. 长沙: 国防科学技术大学, 2011.

    Wu Saicheng. Research on key technology of high-precision attitude measurement system with ring laser gyroscope[D]. Changsha: National University of Defense Technology, 2011. (in Chinese)

[5] 江奇渊, 汤建勋, 韩松来, 等. 36维Kalman滤波的激光陀螺捷联惯导系统级标定方法[J]. 红外与激光工程, 2015, 44(5): 1579-1586.

    Jiang Qiyuan, Tang Jianxun, Han Songlai, et al. Systematic calibration method based on 36-dimension Kalman filter for laser gyro SINS[J]. Infrared and Laser Engineering, 2015, 44(5): 1579-1586. (in Chinese)

[6] 张红良. 陆用高精度激光陀螺捷联惯导系统误差参数估计方法研究[D]. 长沙: 国防科学技术大学, 2010.

    Zhang Hongliang. Research on error parameters estimation for High-precision RLG-SINS [D]. Changsha: National University of Defense Technology, 2010. (in Chinese)

[7] 魏国. 二频机抖激光陀螺双轴旋转惯性导航系统若干关键技术研究[D]. 长沙: 国防科学技术大学, 2013.

    Wei Guo. Research on some key technologies for double-axis rotation inertial navigation system with mechanically dithered ring laser gyroscope[D]. Changsha: National University of Defense Technology, 2013. (in Chinese)

[8] 贾继超, 秦永元, 张波, 等. 激光陀螺捷联惯导系统外场快速标定新方法[J]. 中国惯性技术学报, 2014, 22(1): 23-25.

    Jia Jichao, Qin Yongyuan, Zhang Bo, et al. New fast systematic calibration method for RLG-SINS[J]. Journal of Chinese Inertial Technology, 2014, 22(1): 23-25. (in Chinese)

[9] 于海龙, 吕信明, 汤建勋, 等. 激光捷联惯导系统高阶误差模型的建立与分析[J]. 红外与激光工程, 2013, 42(9): 2375-2379.

    Yu Hailong, Lv Xinming, Tang Jianxun, et al. Establishment and analysis of high-order error model of laser gyro SINS[J]. Infrared and Laser Engineering, 2013, 42(9): 2375-2379. (in Chinese)

[10] 储海荣, 段镇, 贾宏光, 等. 捷联惯导系统的误差模型与仿真[J]. 光学 精密工程, 2009, 17(11): 2779-2785.

    Chu Hairong, Duan Zhen, Jia Hongguang, et al. Error model and simulation of strapdown inertial navigation system[J]. Optics and Precision Engineering, 2009, 17(11): 2779-2785. (in Chinese)

[11] 杜海龙, 张荣辉, 刘平, 等. 捷联惯导系统姿态解算模块的实现[J]. 光学 精密工程, 2008, 16(10): 1956-1962.

    Du Hailong, Zhang Ronghui, Liu Ping, et al. Realization of attitude algorithm module in strapdown inertial guidance system[J]. Optics and Precision Engineering, 2008, 16(10): 1956-1962. (in Chinese)

[12] Zhang H, Wu Y, Wu M. A multi-position calibration algorithm for inertial measurement units[Z]. Honolulu, Hawaii: 2008.

石文峰, 王省书, 郑佳兴, 战德军, 王以忠. 激光陀螺捷联惯导系统多位置系统级标定方法[J]. 红外与激光工程, 2016, 45(11): 1106004. Shi Wenfeng, Wang Xingshu, Zheng Jiaxing, Zhan Dejun, Wang Yizhong. Multi-position systematic calibration method for RLG-SINS[J]. Infrared and Laser Engineering, 2016, 45(11): 1106004.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!