光学 精密工程, 2011, 19 (6): 1281, 网络出版: 2011-07-18   

压电陶瓷执行器迟滞的滑模逆补偿控制

Sliding mode control of hysteresis of piezoceramic actuator based on inverse Preisach compensation
作者单位
1 北京理工大学 自动化学院,北京 100081
2 航天东方红卫星有限公司, 北京 100080
摘要
为了降低迟滞特性对压电陶瓷执行器的影响,研究了基于Preisach逆补偿的滑模控制策略。首先,利用分类排序方法在控制平台上实现了迟滞的Preisach逆模型;然后,将其串联到压电陶瓷执行器前用于抵消迟滞非线性。考虑到迟滞逆补偿的非完全抵消、模型参数的不确定性以及扰动等问题,设计了一种分段边界层滑模控制律。最后,为了验证所设计的控制策略的有效性,设计并实现了逆补偿+PI控制器。实验结果表明,逆补偿+滑模控制提高了基于压电陶瓷执行器驱动的纳米定位系统的跟踪精度,其跟踪正弦输入的平均绝对误差为0.020 6 μm。与逆补偿+PI控制策略相比,逆补偿+滑模控制对不同的输入信号有很好的适应性,保证了纳米定位平台的定位精度。
Abstract
In order to reduce the nonlinear hysteresis of piezoceramic actuators, a sliding mode control scheme based on Preisach inverse compensation was proposed in this paper. Firstly, an inverse Preisach model of the hysteresis was built by using the sorting & taxis realization method. Then the inverse model was connected in series with the hysteresis of the system to reduce the impact of the nonlinear hysteresis. In consideration of that the hysteresis can′t be entirely offseted by the inverse model and there are also many uncertainties in the system, a sliding mode controller with a sub-boundary layer was designed. Finally, to verify the feasibility of the sliding mode controller, a PI controller was presented to compare with the proposed scheme. The experiment results show that the control scheme improves the tracking accuracy of the system,and the average absolute error is 0.020 6 μm when tracking is on sinusoidal input. Compared with the PI controller based on the inverse Preisach model, the proposed control scheme has a better adaptability and can offer a good tracking accuracy.
参考文献

[1] VASILJEV P,MAZEIKA D,KULVIETIS G. Modelling and analysis of omni-directional piezoelectric actuator [J]. Journal of Sound and Vibration, 2007,308:867-878.

[2] 张栋,张承进,魏强. 压电微动工作台的动态迟滞模型[J]. 光学 精密工程, 2009,17(3): 551-556.

    ZHANG D, ZHANG CH J, WEI Q. Dynamic hysteresis model of piezopositioning stage[J]. Opt. Precision Eng., 2009,17(3):551-556. (in Chinese)

[3] 王生怀,陈育荣,王淑珍,等. 三维精密位移系统的设计[J]. 光学 精密工程, 2010,18(1):175-182.

    WANG SH H, CHEN Y R, WANG SH ZH, et al.. Design of 3D precision displacement system[J]. Opt. Precision Eng., 2010,18(1):175-182. (in Chinese)

[4] LEE S H, ROYSTON T J,FRIEDMAN G. Modeling and compensation of hysteresis in piezoceramic transducers for vibration control[J]. Journal of Intelligent Material Systems and Structures, 2000,11(10):781-790.

[5] JILES D C,ATHERTON D L. Ferromagnetic hysteresis[J]. IEEE Transactions Magnetics, 1983,19(5):2183-2185.

[6] HODGDON M L. Applications of a theory of ferromagnetic hysteresis[J]. IEEE Transactions Magnetics, 1988,24(1):218-222.

[7] WANG X H, SUN T. Preisach modeling of hysteresis for fast tool servo system [J]. Opt. Precision Eng., 2009,17(6):1421-1425.

[8] 王岳宇,赵学增. 补偿压电陶瓷迟滞与蠕变的逆控制算法[J]. 光学 精密工程, 2006,14(6):1032-1040.

    WANG Y Y, ZHAO X Z. Inverse control algorithm to compensate the hysteresis and creep effect of piezoceramic[J]. Opt. Precision Eng., 2006, 14(6):1032-1040. (in Chinese)

[9] SCHIFFER A,LVANYI A. Preisach distribution function approximation with wavelet interpolation technique[J]. Physica B, 2006,372(1):101-105.

[10] BOBBIO S,MILANO G,SERPICO C, et al.. Models of magnetic hysteresis based on play and stop hysterons[J]. IEEE Transactions on Magnetics, 1997,33(6):4417-4426.

[11] TAO G,KOKOTOVIC P V. Adaptive Control of Systems with Actuator and Sensor Nonlinearities[M]. New York: Wiley. 1996.

[12] KUHNEN K,JANOCHA H. Adaptive inverse control of piezoelectric actuators with hysteresis operators[C]. European Control Conference, Karlsruhe Germany: 1999.

[13] GE P,JOUANEH M. Tracking control of a piezoceramic actuator[J]. IEEE Translations on Control System Technology, 1996,4(3):209-216.

[14] SHEN J C,JYWE W Y,CHIANG H K, et al.. Precision tracking control of a piezoelectric-actuated system[J]. Precision Engineering, 2008,32(2):71-78.

[15] TANG J,WANG KW. High authority and nonlinearity issues in active-passive hybrid piezoelectric networks for structural damping[J]. Journal of Intelligent Material Systems and Structures, 2000,11(3):581-591.

[16] SU C Y,STEPANENKO Y,SVOBODA J,et al.. Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis[J]. IEEE Transactions on Automatic Control, 2000, 45(12):2427-2432.

[17] MAYERGOYZ I D. Mathematical Model of Hysteresis[M]. NewYork:Springer,1991.

[18] BROKATEAN M,SPREKELS J. Hysteresis and Phase Transitions[M]. Applied Mathematical Sciences. Springer Verlag, 1996.

[19] BROKATE M. Some mathematical properties of the Preisach model for hysteresis[J]. IEEE Transactions on Magnetics, 1989,25(4):2922-2924.

[20] 李黎, 刘向东, 侯朝桢. 压电陶瓷执行器Preisach 模型的分类排序实现[J]. 压电与声光, 2007, 29(5):544-547.

    LI L, LIU X D, HOU C ZH. The sorting &taxis real ization of preisach model on piezoelectric ceramic actuator[J]. Piezoel Ectectrics & Acoustooptics, 2007,29(5):544-547. (in Chinese)

[21] 耿洁,刘向东,陈振,等. Preisach迟滞逆模型的神经网络分类排序实现[J]. 光学 精密工程,2010,18(4):855-862.

    GENG J, LIU X D, CHEN ZH, at el.. The sorting & taxis realization of preisach inverse hysteresis model using neural network[J]. Opt. Precision Eng., 2010,18(4):855-862.

[22] 王永骥, 涂健. 神经元网络控制[M]. 北京:机械工业出版社,1998.

    WANG Y J, TU J. Neural Network Control [M]. Beijing: Mechanical Industry Press .1998. (in Chinese)

[23] 卢志刚, 吴士昌, 于灵慧. 非线性自适应逆控制及其应用[M]. 北京: 国防工业出版社, 2004.

    LU ZH G, WU SH CH, YU L H. Nonlinear Adaptive Inverse Control and Its Application [M]. Beijing: National Defense Industry Press, 2004. (in Chinese)

[24] 高为炳. 变结构控制的理论及设计方法[M]. 北京:科学出版社, 1998.

    GAO W B. Variable Structure Control Theory and Design Method[M]. Beijing: Science Press, 1998.

赖志林, 刘向东, 耿洁, 李黎. 压电陶瓷执行器迟滞的滑模逆补偿控制[J]. 光学 精密工程, 2011, 19(6): 1281. LAI Zhi-lin, LIU Xiang-dong, GENG Jie, LI Li. Sliding mode control of hysteresis of piezoceramic actuator based on inverse Preisach compensation[J]. Optics and Precision Engineering, 2011, 19(6): 1281.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!