人工晶体学报, 2020, 49 (11): 1953, 网络出版: 2021-01-26   

氮化物宽禁带半导体的MOCVD大失配异质外延

Large LatticeMismatched Heteroepitaxial Growth of Nitride Wide Bandgap Semiconductors by MOCVD
沈波 1,2,3,4,5杨学林 1,2,3许福军 1,2,3
作者单位
1 北京大学宽禁带半导体研究中心,北京 100871
2 北京大学人工微结构和介观物理国家重点实验室,北京 100871
3 北京大学物理学院,北京 100871
4 量子物质科学协同创新中心,北京 100871
5 教育部纳光电子前沿科学中心,北京 100871
摘要
以氮化镓(GaN)、AlN(氮化铝)为代表的Ⅲ族氮化物宽禁带半导体是研制短波长光电子器件和高频、高功率电子器件的核心材料体系。由于缺少高质量、低成本的同质GaN和AlN衬底,氮化物半导体主要通过异质外延,特别是大失配异质外延来制备。由此导致的高缺陷密度、残余应力成为当前深紫外发光器件、功率电子器件等氮化物半导体器件发展的主要瓶颈,严重影响了材料和器件性能的提升。本文简要介绍了氮化物半导体金属有机化学气相沉积(MOCVD)大失配异质外延的发展历史,重点介绍了北京大学在蓝宝石衬底上AlN、高Al组分AlGaN的MOCVD外延生长和p型掺杂、Si衬底上GaN薄膜及其异质结构的外延生长和缺陷控制等方面的主要研究进展。最后对Ⅲ族氮化物宽禁带半导体MOCVD大失配异质外延的未来发展做了简要展望。
Abstract
Ⅲnitride wide bandgap semiconductors, such as gallium nitride (GaN) and aluminum nitride (AlN), are the key materials for the development of shortwavelength optoelectronic devices, as well as highfrequency and highpower electronic devices. Due to the lack of highquality and lowcost homogeneous GaN and AlN substrates, nitride semiconductors are mainly realized by means of heteroepitaxy, especially the large latticemismatched heteroepitaxy, resulting in high defect density and huge residual stress in the epilayers, which have become the key bottlenecks in the development of deep ultraviolet light emitting devices and power electronic devices, and other nitride semiconductor ones. In this paper, the research history of the large latticemismatched heteroepitaxy of nitride semiconductors by means of metal organic chemical vapor deposition (MOCVD) is first briefly introduced. Then, the research progress on the MOCVD epitaxial growth and ptype doping of AlN and high Al composition AlGaN on sapphire substrate, as well as the MOCVD epitaxial growth and defect control of GaN and its heterostructures on Si substrate in Peking University are demenstrated. Finally, the current challenges and developing trends on the large latticemismatched heteroepitaxy for Ⅲnitride wide bandgap semiconductors are reviewed and expected.
参考文献

[1] 沈 波,唐 宁,杨学林,等.GaN基半导体异质结构的外延生长、物性研究和器件应用[J].物理学进展,2017,37(3):8196.

[2] 陈航洋,刘达艺,李金钗,等.高Al组分Ⅲ族氮化物结构材料及其在深紫外LED应用的进展[J].物理学进展,2013,33(2):4356.

[3] Dadgar A, Strittmatter A, Blsing J, Metalorganic chemical vapor phase epitaxy of galliumnitride on silicon[J]. Physica Status Solidi C, 2003, 6: 15831606.

[4] Amano H, Sawaki N, Akasaki I, et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer[J]. Applied Physics Letters, 1986, 48(5): 353355.

[5] Nakamura S, Harada Y, Seno M. Novel metalorganic chemical vapor deposition system for GaN growth[J]. Applied Physics Letters, 1991, 58(18): 20212023.

[6] Khan M A, Adivarahan V, Zhang J P, et al. Stripe geometry ultraviolet light emitting diodes at 305 nanometers using quaternary AlInGaN multiple quantum wells[J]. Japanese Journal of Applied Physics, 2001, 40(Part 2,No.12A): L1308L1310.

[7] Kneissl M, Kolbe T, Chua C, et al. Advances in group Ⅲnitride based deep UV lightemitting diode technology[J]. Semiconductor Science and Technology, 2011, 26(1): 014036.

[8] Mickeviius J, Tamulaitis G, Shur M, et al. Internal quantum efficiency in AlGaN with strong carrier localization[J]. Applied Physics Letters, 2012, 101(21): 211902.

[9] Ban K, Yamamoto J I, Takeda K, et al. Internal quantum efficiency of wholecompositionrange AlGaN multiquantum wells[J]. Applied Physics Express, 2011, 4(5): 052101.

[10] Yoichi Kawakami, Mitsuru Funato, Ryan G. Banal. Initial nucleation of AlN grown directly on sapphire substrates by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2008, 92(24): 241905.

[11] Hirayama H, Yatabe T, Noguchi N, et al. 231261 nm AlGaN deepultraviolet lightemitting diodes fabricated on AlN multilayer buffers grown by ammonia pulseflow method on sapphire[J]. Applied Physics Letters, 2007, 91(7): 071901.

[12] Miyake H, Nishio G, Suzuki S, et al. Annealing of an AlN buffer layer in N2CO for growth of a highquality AlN film on sapphire[J]. Applied Physics Express, 2016, 9(2): 025501.

[13] Miyake H, Lin C H, Tokoro K, et al. Preparation of highquality AlN on sapphire by hightemperature facetoface annealing[J]. Journal of Crystal Growth, 2016, 456: 155159.

[14] Imura M, Nakano K, Narita G, et al. Epitaxial lateral overgrowth of AlN on trenchpatterned AlN layers[J]. Journal of Crystal Growth, 2007, 298: 257260.

[15] Zeimer U, Kueller V, Knauer A, et al. High quality AlGaN grown on ELO AlN/sapphire templates[J]. Journal of Crystal Growth, 2013, 377:3236.

[16] Dong P, Yan J C, Wang J X, et al. 282nm AlGaNbased deep ultraviolet lightemitting diodes with improved performance on nanopatterned sapphire substrates[J]. Applied Physics Letters, 2013, 102(24): 241113.

[17] Xu F J, Zhang L S, Xie N, et al. Realization of low dislocation density AlN on a smallcoalescencearea nanopatterned sapphire substrate[J]. CrystEngComm, 2019, 21(15): 24902494.

[18] Wickenden A E, Koleske D D, Henry R L, et al. Resistivity control in unintentionally doped GaN films grown by MOCVD[J].Journal of Crystal Growth, 2004, 260(1/2): 5462.

[19] Xu F J, Xu J, Shen B, et al. Realization of highresistance GaN by controlling the annealing pressure of the nucleation layer in metalorganic chemical vapor deposition[J]. Thin Solid Films, 2008, 517(2): 588591.

[20] Xu F J, Shen B, Wang M J, et al. Mechanical properties of AlxGa1-xN films with high Al composition grown on AlN/sapphire templates[J].Applied Physics Letters, 2007, 91(9): 091905.

[21] Aggerstam T, Lourdudoss S, Radamson H H, et al. Investigation of the interface properties of MOVPE grown AlGaN/GaN high electron mobility transistor (HEMT) structures on sapphire [J].Thin Solid Films, 2006, 515(2): 705707.

[22] Webb J B, Tang H, Rolfe S, et al. Semiinsulating Cdoped GaN and highmobility AlGaN/GaN heterostructures grown by ammonia molecular beam epitaxy[J].Applied Physics Letters, 1999, 75(7): 953955.

[23] Fariza A,Lesnik A,Neugebauer S, et al. Leakage currents and Fermilevel shifts in GaN layers upon iron and carbondoping[J]. Journal of Applied Physics, 2017, 122(2): 025704.

[24] Warren Weeks T Jr,Bremser M D,Ailey K S, et al. GaN thin films deposited via organometallic vapor phase epitaxy on alpha(6H)SiC(0001) using hightemperature monocrystalline AlN buffer layers[J].Applied Physics Letters, 1995, 67(3): 401403.

[25] Chen J T, Pomeroy J W, Rorsman N, et al. Low thermal resistance of a GaNonSiC transistor structure with improved structural properties at the interface[J].Journal of Crystal Growth, 2015, 428: 5458.

[26] Pengelly R S, Wood S M, Milligan J W, et al. A review of GaN on SiC high electronmobility power transistors and MMICs[J].IEEE Transactions on Microwave Theory and Techniques, 2012, 60(6): 17641783.

[27] Guo S, Gao X, Gorka D, et al. MOCVD growth and characterization of GaN HEMT material[J]. ECS Transactions, 2011, 41(8): 295299.

[28] Chen J T, Forsberg U, Janzén E. Impact of residual carbon on twodimensional electron gas properties in AlxGa1-xN/GaN heterostructure[J]. Applied Physics Letters, 2013, 102(19): 193506193510.

[29] Wang X L, Hu G X, Ma Z Y, et al. AlGaN/AlN/GaN/SiC HEMT structure with high mobility GaN thin layer as channel grown by MOCVD[J].Journal of Crystal Growth, 2007, 298: 835839.

[30] Zhang D G, Li Z H, Yang Q K, et al. Research on epitaxial of 250 nm high quality GaN HEMT based on AlN surface leveling technology[J].Applied Surface Science, 2020, 509: 145339.

[31] Dadgar A, Blsing J, Diez A, et al. Metalorganic chemical vapor phase epitaxy of crackfree GaN on Si (111) exceeding 1 μm in thickness[J]. Japanese Journal of Applied Physics, 2000, 39(Part 2,No. 11B): L1183L1185.

[32] Feltin E, Beaumont B, Laügt M, et al. Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy[J]. Applied Physics Letters, 2001, 79(20): 32303232.

[33] Cheng K, Leys M, Degroote S, et al. Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using stepgraded AlGaN intermediate layers[J]. Journal of Electronic Materials, 2006, 35(4): 592598.

[34] Ishikawa H, Zhao G Y, Nakada N, et al. GaN on Si substrate with AlGaN/AlN intermediate layer[J]. Japanese Journal of Applied Physics, 1999, 38(Part 2,No.5A): L492L494.

[35] Dadgar A, Hempel T, Blsing J, et al. Improving GaNonsilicon properties for GaN device epitaxy[J]. Physica Status Solidi C, 2011, 8(5): 15031508.

[36] Lawrence Selvaraj S, Suzue T, Egawa T. Breakdown enhancement of AlGaN/GaN HEMTs on 4in silicon by improving the GaN quality on thick buffer layers[J]. IEEE Electron Device Letters, 2009, 30(6): 587589.

[37] Liu J, Huang Y, Sun X, et al. Waferscale crackfree 10 μmthick GaN with a dislocation density of 5.8×107 cm-2 grown on Si[J]. Journal of Physics D: Applied Physics, 2019, 52(42): 4251024251027.

[38] Zhang J, Yang X L, Feng Y X, et al. Vacancyengineeringinduced dislocation inclination in Ⅲnitrides on Si substrates[J].Physical Review Materials, 2020, 4(7): 073402.

[39] Cheng J P, Yang X L, Zhang J, et al. Edge dislocations triggered surface instability in tensile epitaxial hexagonal nitride semiconductor[J].ACS Applied Materials & Interfaces, 2016, 8(49): 3410834114.

[40] Then H W, Dasgupta S, Radosavljevic M, et al. 3D heterogeneous integration of high performance highK metal gate GaN NMOS and Si PMOS transistors on 300 mm highresistivity Si substrate for energyefficient and compact power delivery, RF (5G and beyond) and SoC applications[C] //2019 IEEE International Electron Devices Meeting (IEDM). December 711, 2019, San Francisco, CA, USA. IEEE, 2019: 17.3. 117.3.4.

[41] Kneissl M, Kolbe T, Chua C, et al. Advances in group Ⅲnitridebased deep UV lightemitting diode technology[J]. Semiconductor Science and Technology, 2011, 26(1): 014036.

[42] Hirayama H, Maeda N, Fujikawa S, et al. Recent progress and future prospects of AlGaNbased highefficiency deepultraviolet lightemitting diodes[J]. Japanese Journal of Applied Physics, 2014, 53(10): 100209.

[43] Jindal V, ShahedipourSandvik F. Density functional theoretical study of surface structure and adatom kinetics for wurtzite AlN[J]. Journal of Applied Physics, 2009, 105(8): 084902.

[44] Lin H Y, Chen Y F, Lin T Y, et al. Direct evidence of compositional pulling effect in AlxGa1-xN epilayers[J]. Journal of Crystal Growth, 2006, 290(1): 225228.

[45] Tsai Y L, Wang C L, Lin P H, et al. Observation of compositional pulling phenomenon in AlxGa1-xN (0.4

[46] He C, Qin Z, Xu F, et al. Mechanism of stressdriven composition evolution during heteroepitaxy in a ternary AlGaN system[J]. Sci Rep, 2016, 6: 25124.

[47] Stampfl C, Neugebauer J, Van de Walle C G. Doping of AlxGa1-xN alloys[J]. Materials Science and Engineering:B, 1999, 59(1/2/3): 253257.

[48] Namkoong G, Doolittle W A, Brown A S. Incorporation of Mg in GaN grown by plasmaassisted molecular beam epitaxy[J]. Applied Physics Letters, 2000, 77(26): 43864388.

[49] Nam K B, Nakarmi M L, Li J, et al. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence[J]. Applied Physics Letters, 2003, 83(5): 878880.

[50] Zhang X, Xu F J, Wang J M, et al. Epitaxial growth of AlN films on sapphire via a multilayer structure adopting a low and hightemperature alternation technique[J]. CrystEngComm, 2015, 17(39): 74967499.

[51] Wang J M, Xu F J, He C G, et al. High quality AlN epilayers grown on nitrided sapphire by metal organic chemical vapor deposition[J]. Scientific Reports, 2017, 7: 42747.

[52] Wang M X, Xu F J, Xie N, et al. Crystal quality evolution of AlN films via hightemperature annealing under ambient N2 conditions[J]. CrystEngComm, 2018, 17: 7496.

[53] Wang M X, Xu F J, Wang J M, et al. The sapphire substrate pretreatment effects on hightemperature annealed AlN templates in deep ultraviolet light emitting diodes[J]. CrystEngComm, 2019, 21(31): 46324636.

[54] Wang M X, Xu F J, Xie N, et al. Hightemperature annealing induced evolution of strain in AlN epitaxial films grown on sapphire substrates[J]. Applied Physics Letters, 2019, 114(11): 112105.

[55] Zhang L S, Xu F J, Wang J M, et al. Highquality AlN epitaxy on nanopatterned sapphire substrates prepared by nanoimprint lithography[J]. Scientific Reports, 2016, 6: 35934.

[56] Xie N, Xu F J, Zhang N, et al. Improved crystalline quality of AlN on nanopatterned sapphire substrate based on period size effect[J]. Japanese Journal of Applied Physics, 2019, 58: 100912.

[57] Xie N, Xu F J, Wang J M, et al. Stress evolution in AlN grown on nanopatterned sapphire substrates[J]. Applied Physics Express, 2020, 13(1): 015504.

[58] He C G, Qin Z X, Xu F J, et al. Growth of high quality nAl0.5Ga0.5N thick films by MOCVD[J]. Materials Letters, 2016, 176: 298300.

[59] Hirayama H, Fujikawa S, Noguchi N, et al. 222282 nm AlGaN and InAlGaNbased deepUV LEDs fabricated on highquality AlN on sapphire[J]. Physica Status Solidi (A) Applications and Materials Science, 2009, 206(6): 11761182.

[60] Wang T Y, Tasi C T, Lin C F, et al. 85% internal quantum efficiency of 280 nm AlGaN multiple quantum wells by defect engineering[J]. Scientific Reports, 2017, 7(1): 14422.

[61] Bryan Z, Bryan I, Xie, J. Q., et al. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates[J]. Applied Physics Letters, 2015, 106(14): 142107.

[62] Sun Y H, Xu F J, Zhang N, et al. Realization of high efficiency AlGaNbased multiple quantum wells grown on nanopatterned sapphire substrates[J]. Cryst Eng Comm, 2020, DOI: 10.1039/D0CE01491E.

[63] Sun Y H, Xu F J, Xie N, et al. Controlled bunching approach for achieving high efficiency active region in AlGaNbased deep ultraviolet lightemitting devices with dualband emission[J]. Applied Physics Letters, 2020: 116212102.

[64] He C G, Qin Z Q, Xu F J, et al. Free and bound excitonic effects in Al0.5Ga0.5N/Al0.35Ga0.65N MQWs with different Sidoping levels in the well layers[J]. Sci Rep, 2015, 5: 13046.

[65] Wang W Y, Lu H M, Fu L, et al. Enhancement of optical polarization degree of AlGaN quantum wells by using staggered structure[J]. Optics Express, 2016, 24(16): 1817618183.

[66] Chen Y, Wu H, Han E, et al. High hole concentration in ptype AlGaN by indiumsurfactantassisted Mgdelta doping[J]. Applied Physics Letters, 2015, 106(16): 162102.

[67] Yoshinobu A, Misaichi T, Sohachi I, et al. High hole carrier concentration realized by alternative codoping technique in metal organic chemical vapor deposition[J]. Applied Physics Letters, 2011, 99(11): 112110.

[68] Zheng T C, Lin W, Liu R, et al. Improved ptype conductivity in Alrich AlGaN using multidimensional Mgdoped superlattices[J]. Sci Rep, 2016, 6: 21897.

[69] Simon J, Protasenko V, Lian C, et al. Polarizationinduced hole doping in widebandgap uniaxial semiconductor heterostructures[J]. Science, 2010, 327(5961): 6064.

[70] Zhang Y H, Dadgar A, Palacios T. Gallium nitride vertical power devices on foreign substrates: a review and outlook[J]. Journal of Physics D: Applied Physics, 2018, 51(27): 273001.

[71] Khadar R A, Liu C, Zhang L Y, et al. 820V GaNonSi quasivertical pin diodes with BFOM of 2.0 GW/cm2[J]. IEEE Electron Device Letters, 2018, 39(3): 401404.

[72] Romanov A E, Speck J S. Stress relaxation in mismatched layers due to threading dislocation inclination[J]. Applied Physics Letters, 2003, 83(13): 25692571.

[73] Follstaedt D M, Lee S R, Allerman A A, et al. Strain relaxation in AlGaN multilayer structures by inclined dislocations[J]. Journal of Applied Physics, 2009, 105(8): 083507.

[74] Cheng J P, Yang X L, Sang L, et al. High mobility AlGaN/GaN heterostructures grown on Si substrates using a large latticemismatch induced stress control technology[J]. Applied Physics Letters, 2015, 106(14): 142106.

[75] Arulkumaran S, Ranjan K, Ng G I, et al. Highfrequency microwave noise characteristics of InAlN/GaN highelectron mobility transistors on Si (111) substrate[J]. IEEE Electron Device Letters, 2014, 35(10): 992994.

[76] Zhang J, Yang X L, Cheng J P, et al. Enhanced transport properties in InAlGaN/AlN/GaN heterostructures on Si (111) substrates: the role of interface quality[J]. Applied Physics Letters, 2017, 110(17): 172101.

[77] Raghavan S. Kinetic approach to dislocation bending in lowmobility films[J]. Physical Review B, 2011, 83(5): 052102.

[78] Chen K J, Hberlen O, Lidow A, et al. GaNonSi power technology: devices and applications[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 779795.

[79] Uren M J, Moreke J, Kuball M. Buffer design to minimize current collapse in GaN/AlGaN HFETs[J]. IEEE Transactions on Electron Devices, 2012, 59(12): 33273333.

[80] Demchenko D O, Diallo I C, Reshchikov M A. Yellow luminescence of gallium nitride generated by carbon defect complexes[J]. Physical Review Letters, 2013, 110(8): 087404.

[81] Lyons J L, Janotti A, Van de Walle C G. Effects of carbon on the electrical and optical properties of InN, GaN, and AlN[J]. Physical Review B, 2014, 89(3): 035204.

[82] Wright A F. Substitutional and interstitial carbon in wurtzite GaN[J].Journal of Applied Physics, 2002, 92(5): 25752585.

[83] Wagner J, Newman R C, Davidson B R, et al. Dicarbon defects in annealed highly carbon doped GaAs[J]. Physical Review Letters, 1997, 78(1): 74.

[84] Newman R C, Davidson B R, Wagner J, et al. Thermal stability of semiinsulating InP epilayers: the roles of dicarbon and carbonhydrogen centers[J]. Physical Review B, 2001, 63(20): 205307.

[85] Yang J Y, Brown G J, Dutta M, et al. Photon absorption in the Restrahlen band of thin films of GaN and AlN:two phonon effects[J]. Journal of Applied Physics, 2005, 98(4): 043517.

[86] Ibanez J, Hernandez S, AlarconLlado E, et al. Farinfrared transmission in GaN, AlN, and AlGaN thin films grown by molecular beam epitaxy[J]. Journal of Applied Physics, 2008, 104(3): 033544.

[87] Wu S, Yang X L, Zhang H S, et al. Unambiguous identification of carbon location on the Nsite in semiinsulating GaN[J]. Physical Review Letters, 2018, 121(14): 145505.

[88] Limpijumnong S, Northrup J E, Van de Walle C G. Entropydriven stabilization of a novel configuration for acceptorhydrogen complexes in GaN[J]. Physical Review Letters, 2001, 87(20): 205505.

[89] Gelhausen O, Phillips M R, Goldys E M, et al. Dissociation of Hrelated defect complexes in Mgdoped GaN[J]. Physical Review B, 2004, 69(12): 125210.

[90] Reboredo F A, Pantelides S T. Novel defect complexes and their role in the ptype doping of GaN[J]. Physical Review Letters, 1999, 82(9): 1887.

[91] Puzyrev Y S, Roy T, Beck M, et al. Dehydrogenation of defects and hotelectron degradation in GaN highelectronmobility transistors[J]. Journal of Applied Physics, 2011, 109(3): 034501.

[92] Wu S, Yang X L, Zhang Q, et al. Direct evidence of hydrogen interaction with carbon: CH complex in semiinsulating GaN[J]. Applied Physics Letters, 2020, 116(26): 262101.

沈波, 杨学林, 许福军. 氮化物宽禁带半导体的MOCVD大失配异质外延[J]. 人工晶体学报, 2020, 49(11): 1953. SHEN Bo, YANG Xuelin, XU Fujun. Large LatticeMismatched Heteroepitaxial Growth of Nitride Wide Bandgap Semiconductors by MOCVD[J]. Journal of Synthetic Crystals, 2020, 49(11): 1953.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!