半导体光电, 2012, 33 (3): 307, 网络出版: 2012-06-25  

原子层淀积技术应用于太阳电池的研究进展

Progresses on Applications of Atomic Layer Deposition in Solar Cells
作者单位
复旦大学 微电子学系ASIC与系统国家重点实验室,上海200433
引用该论文

谢章熠, 谢立恒, 耿阳, 孙清清, 周鹏, 卢红亮, 张卫. 原子层淀积技术应用于太阳电池的研究进展[J]. 半导体光电, 2012, 33(3): 307.

XIE Zhangyi, XIE Liheng, GENG Yang, SUN Qingqing, ZHOU Peng, LU Hongliang, ZHANG Wei. Progresses on Applications of Atomic Layer Deposition in Solar Cells[J]. Semiconductor Optoelectronics, 2012, 33(3): 307.

参考文献

[1] Bakke J R,Pickrahn K L, Brennan T P, et al. Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition[J].Nanoscale,2011,3: 3482-3508.

[2] Suntola T,Anston J.Method for producing compound thin films:USA,A1, 4058430[P].1977-11-15.

[3] Poodt P,Tiba V, Werner F, et al. Ultrafast atomic layer deposition of alumina layers for solar cell passivation[J].J. The Electrochemical Society,2011,158: H937-H940.

[4] Werner F,Veith B, Tiba V, et al.Very low surface recombination velocities on p-and n-type c-Si by ultrafast spatial atomic layer deposition of aluminum oxide[J]. Appl. Phys. Lett.,2010,97:162103.

[5] George S M.Atomic layer deposition: an overview[J].Chem. Rev.,2010,110:111-131.

[6] Kim H,Lee H-B-R,Maeng W J.Applications of atomic layer deposition to nanofabrication and emerging nanodevices[J].Thin Solid Films,2009,517:2563-2580.

[7] Jiang X,Huang H, Prinz F B, et al.Application of atomic layer deposition of platinum to solid oxide fuel cells[J].Chem. Mater.,2008, 20:3897-3905.

[8] Puurunen R L.Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process[J]. J. Appl. Phys.,2005,97:121301-121352.

[9] Miles R W,Zoppi G,Forbes I.Inorganic photovoltaic cells[J]. Mater. Today,2007,10:20-27.

[10] Agostinelli G,Delabie A.Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge[J]. Sol. Energy Mater. & Sol. Cells,2006,90:3438-3443.

[11] Hoex B,Schmidt J, Bock R,et al.Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3[J].Appl. Phys. Lett.,2007,91: 112107-112103.

[12] Hoex B,Heil S B S, Langereis E, et al.Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3[J]. Appl. Phys. Lett., 2006, 89: 042112~042113.

[13] Gunawan O,Guha S. Characteristics of vapor-liquid-solid grown silicon nanowire solar cells[J]. Sol. Energy Mater. & Sol. Cells, 2009, 93: 1388-1393.

[14] Benick J,Hoex B, van de Sanden M C M, et al. High efficiency n-type Si solar cells on Al2O3-passivated boron emitters[J]. Appl. Phys. Lett., 2008,92:253504-253503.

[15] Bock R,Schmidt J, Mau S,et al. The ALU+ concept: N-type silicon solar cells with surface-passivated screen-printed aluminum-alloyed rear emitter[J].IEEE Trans. Electron Devices,2010,57:1966-1971.

[16] Carcia P F,McLean R S. Encapsulation of Cu(InGa)Se2 solar cell with Al2O3 thin-film moisture barrier grown by atomic layer deposition[J].Solar Energy Mater. & Solar Cells,2010,94:2375-2378.

[17] Shockley W,Queisser H J.Detailed balance limit of efficiency of p-n junction solar cells[J].Appl. Phys.,1961,32:510.

[18] Yasutoshi O,Katsumi K, Mitsuru I,et al.Polycrystalline Cu(InGa)Se2 thin-film solar cells with ZnSe buffer layers[J]. Jpn. J. Appl. Phys.,1995,34:5949-5955.

[19] Platzer-Bjrkman C,Lu J,Kessler J,et al.Interface study of CuInSe2/ZnO and Cu(In,Ga)Se2/ZnO devices using ALD ZnO buffer layers[J]. Thin Solid Films, 2003:431/432:321-325.

[20] Yin L,Ye C.Review of quantum dot deposition for extremely thin absorber solar cells[J]. Adv. Mater., 2011,3:41-58.

[21] Dasgupta N P,Lee W, Prinz F B. Atomic layer deposition of lead sulfide thin films for quantum confinement[J].Chem. Mater.,2009,21:3973-3978.

[22] Dasgupta N P,Jung H J, Trejo O, et al.Atomic layer deposition of lead sulfide quantum dots on nanowire surfaces[J].Nano Lett.,2011,11:934-940.

[23] O'Regan B,Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature,1991,353:737-740.

[24] Roh S-J,Mane R S, Lee S-K,et al. Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells[J]. Appl. Phys. Lett., 2006, 89: 253512-253513.

[25] Schmidt J,Merkle A, Brendel R,et al.Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3[J].Prog. Photovolt: Res. Appl., 2008,16:461-466.

[26] Shanmugam M,Baroughi M F, Galipeau D,et al.Effect of atomic layer deposited ultra-thin HfO2 and Al2O3 interfacial layers on the performance of dye sensitized solar cells[J]. Thin Solid Films,2010,518:2678-2682.

[27] Law M,Greene L E, Radenovic A, et al. ZnO Al2O3 and ZnO TiO2 core shell nanowire dye-sensitized solar cells[J]. J. Phys. Chem. B,2006,110:22652-22663.

[28] Hamann T W,Martinson A B F, Elam J W,et al.Aerogel templated ZnO dye-sensitized solar cells[J]. Adv. Mater.,2008,20:1560-1564.

[29] Schmidt H,Flugge H, Winkler T. Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode[J]. Appl. Phys. Lett.,2009,94:243302-243302-3.

[30] Wang J-C,Weng W-T, Tsai M-Y. Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer[J]. J. Mater. Chem., 2010, 20:862-866.

[31] Sarkar S,Culp J H, Whyland J T,et al.Encapsulation of organic solar cells with ultrathin barrier layers deposited by ozon-based atomic layer deposition[J].Organic Electronics,2011,11:1896-1900.

[32] Greene L E,Law M,Yuhas B D,et al.ZnO-TiO2 core-shell nanorod/P3HT solar cells[J]. J. Phys. Chem. C,2007,111:18451-18456.

谢章熠, 谢立恒, 耿阳, 孙清清, 周鹏, 卢红亮, 张卫. 原子层淀积技术应用于太阳电池的研究进展[J]. 半导体光电, 2012, 33(3): 307. XIE Zhangyi, XIE Liheng, GENG Yang, SUN Qingqing, ZHOU Peng, LU Hongliang, ZHANG Wei. Progresses on Applications of Atomic Layer Deposition in Solar Cells[J]. Semiconductor Optoelectronics, 2012, 33(3): 307.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!