半导体光电, 2012, 33 (3): 307, 网络出版: 2012-06-25  

原子层淀积技术应用于太阳电池的研究进展

Progresses on Applications of Atomic Layer Deposition in Solar Cells
作者单位
复旦大学 微电子学系ASIC与系统国家重点实验室,上海200433
摘要
原子层淀积(ALD)是一种先进的纳米级薄膜生长技术,在微电子和光电子领域有着广泛的应用前景,尤其在提高太阳电池的光电转换效率方面正发挥越来越大的作用,很可能成为下一代太阳电池工艺中的重要方法。文章综述了近年来ALD技术在太阳电池领域的应用研究进展,详细介绍了ALD技术应用在不同类型太阳电池的最新研究成果和存在的问题,并对其发展趋势进行了展望。
Abstract
Atomic layer deposition (ALD) emerged as an important and advanced method for preparing nanoscale thin films for microelectronics and optoelectronics applications. ALD is more and more important in improving the efficiency of photovoltaic. It is probably becoming the most significant process method for the next generation of solar cells. Research progresses on applications of atomic layer deposition in solar cells are reviewed in this article. New research results and existing problems of ALD technology used in various types of solar cells are introduced in detail, and the development trends are prospected.
参考文献

[1] Bakke J R,Pickrahn K L, Brennan T P, et al. Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition[J].Nanoscale,2011,3: 3482-3508.

[2] Suntola T,Anston J.Method for producing compound thin films:USA,A1, 4058430[P].1977-11-15.

[3] Poodt P,Tiba V, Werner F, et al. Ultrafast atomic layer deposition of alumina layers for solar cell passivation[J].J. The Electrochemical Society,2011,158: H937-H940.

[4] Werner F,Veith B, Tiba V, et al.Very low surface recombination velocities on p-and n-type c-Si by ultrafast spatial atomic layer deposition of aluminum oxide[J]. Appl. Phys. Lett.,2010,97:162103.

[5] George S M.Atomic layer deposition: an overview[J].Chem. Rev.,2010,110:111-131.

[6] Kim H,Lee H-B-R,Maeng W J.Applications of atomic layer deposition to nanofabrication and emerging nanodevices[J].Thin Solid Films,2009,517:2563-2580.

[7] Jiang X,Huang H, Prinz F B, et al.Application of atomic layer deposition of platinum to solid oxide fuel cells[J].Chem. Mater.,2008, 20:3897-3905.

[8] Puurunen R L.Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process[J]. J. Appl. Phys.,2005,97:121301-121352.

[9] Miles R W,Zoppi G,Forbes I.Inorganic photovoltaic cells[J]. Mater. Today,2007,10:20-27.

[10] Agostinelli G,Delabie A.Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge[J]. Sol. Energy Mater. & Sol. Cells,2006,90:3438-3443.

[11] Hoex B,Schmidt J, Bock R,et al.Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3[J].Appl. Phys. Lett.,2007,91: 112107-112103.

[12] Hoex B,Heil S B S, Langereis E, et al.Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3[J]. Appl. Phys. Lett., 2006, 89: 042112~042113.

[13] Gunawan O,Guha S. Characteristics of vapor-liquid-solid grown silicon nanowire solar cells[J]. Sol. Energy Mater. & Sol. Cells, 2009, 93: 1388-1393.

[14] Benick J,Hoex B, van de Sanden M C M, et al. High efficiency n-type Si solar cells on Al2O3-passivated boron emitters[J]. Appl. Phys. Lett., 2008,92:253504-253503.

[15] Bock R,Schmidt J, Mau S,et al. The ALU+ concept: N-type silicon solar cells with surface-passivated screen-printed aluminum-alloyed rear emitter[J].IEEE Trans. Electron Devices,2010,57:1966-1971.

[16] Carcia P F,McLean R S. Encapsulation of Cu(InGa)Se2 solar cell with Al2O3 thin-film moisture barrier grown by atomic layer deposition[J].Solar Energy Mater. & Solar Cells,2010,94:2375-2378.

[17] Shockley W,Queisser H J.Detailed balance limit of efficiency of p-n junction solar cells[J].Appl. Phys.,1961,32:510.

[18] Yasutoshi O,Katsumi K, Mitsuru I,et al.Polycrystalline Cu(InGa)Se2 thin-film solar cells with ZnSe buffer layers[J]. Jpn. J. Appl. Phys.,1995,34:5949-5955.

[19] Platzer-Bjrkman C,Lu J,Kessler J,et al.Interface study of CuInSe2/ZnO and Cu(In,Ga)Se2/ZnO devices using ALD ZnO buffer layers[J]. Thin Solid Films, 2003:431/432:321-325.

[20] Yin L,Ye C.Review of quantum dot deposition for extremely thin absorber solar cells[J]. Adv. Mater., 2011,3:41-58.

[21] Dasgupta N P,Lee W, Prinz F B. Atomic layer deposition of lead sulfide thin films for quantum confinement[J].Chem. Mater.,2009,21:3973-3978.

[22] Dasgupta N P,Jung H J, Trejo O, et al.Atomic layer deposition of lead sulfide quantum dots on nanowire surfaces[J].Nano Lett.,2011,11:934-940.

[23] O'Regan B,Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature,1991,353:737-740.

[24] Roh S-J,Mane R S, Lee S-K,et al. Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells[J]. Appl. Phys. Lett., 2006, 89: 253512-253513.

[25] Schmidt J,Merkle A, Brendel R,et al.Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3[J].Prog. Photovolt: Res. Appl., 2008,16:461-466.

[26] Shanmugam M,Baroughi M F, Galipeau D,et al.Effect of atomic layer deposited ultra-thin HfO2 and Al2O3 interfacial layers on the performance of dye sensitized solar cells[J]. Thin Solid Films,2010,518:2678-2682.

[27] Law M,Greene L E, Radenovic A, et al. ZnO Al2O3 and ZnO TiO2 core shell nanowire dye-sensitized solar cells[J]. J. Phys. Chem. B,2006,110:22652-22663.

[28] Hamann T W,Martinson A B F, Elam J W,et al.Aerogel templated ZnO dye-sensitized solar cells[J]. Adv. Mater.,2008,20:1560-1564.

[29] Schmidt H,Flugge H, Winkler T. Efficient semitransparent inverted organic solar cells with indium tin oxide top electrode[J]. Appl. Phys. Lett.,2009,94:243302-243302-3.

[30] Wang J-C,Weng W-T, Tsai M-Y. Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer[J]. J. Mater. Chem., 2010, 20:862-866.

[31] Sarkar S,Culp J H, Whyland J T,et al.Encapsulation of organic solar cells with ultrathin barrier layers deposited by ozon-based atomic layer deposition[J].Organic Electronics,2011,11:1896-1900.

[32] Greene L E,Law M,Yuhas B D,et al.ZnO-TiO2 core-shell nanorod/P3HT solar cells[J]. J. Phys. Chem. C,2007,111:18451-18456.

谢章熠, 谢立恒, 耿阳, 孙清清, 周鹏, 卢红亮, 张卫. 原子层淀积技术应用于太阳电池的研究进展[J]. 半导体光电, 2012, 33(3): 307. XIE Zhangyi, XIE Liheng, GENG Yang, SUN Qingqing, ZHOU Peng, LU Hongliang, ZHANG Wei. Progresses on Applications of Atomic Layer Deposition in Solar Cells[J]. Semiconductor Optoelectronics, 2012, 33(3): 307.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!