激光生物学报, 2020, 29 (6): 481, 网络出版: 2021-02-05  

放射治疗相关肿瘤血管生成的研究进展

Research Progress on Radiotherapy-related Angiogenesis
黄皓 1周光明 1,2胡文涛 1,2,*
作者单位
1 苏州大学放射医学与防护学院,苏州 215123
2 放射医学与辐射防护国家重点实验室,苏州 215123
摘要
放射治疗是临床肿瘤治疗中一种广泛使用的物理疗法,然而,辐射引起的肿瘤转移往往会导致治疗失败。肿瘤转移和肿瘤血管生成密切相关,抗血管生成药物联合放疗可显著改善临床肿瘤患者的预后,因此,放疗相关肿瘤血管生成的研究对于临床肿瘤放射治疗意义重大。本综述目的在于总结放射治疗相关肿瘤血管生成方面的最新研究进展,为优化放射治疗临床方案和研发肿瘤血管生成的靶向药物提供参考。
Abstract
Radiotherapy is one of the conventional treatments of tumor. However, radiation-induced metastasis usually re-sults in the poor clinical outcome of radiotherapy. Tumor angiogenesis is tightly related to its metastasis and the combined administration of anti-angiogenetic drugs with radiotherapy e.ectively improves the prognosis of tumor radiotherapy, there-fore, studies on radiation-related angiogenesis are of practical signi.cance. The purpose of this review is to summarize the re-cent research progress on tumor angiogenesis related to radiotherapy and to provide a considerable reference for developing medicine targeting on angiogenesis and improving the clinical outcome of radiotherapy.
参考文献

[1] CITRIN D E. Recent developments in radiotherapy[J]. The New England Journal of Medicine, 2017, 377(11): 1065-1075.

[2] 李涛,郎锦义.放射肿瘤学的进展与未来[J].肿瘤预防与治疗, 2019, 32(1): 1-6. LI Tao, LANG Jinyi. The advances and prospects in radio-oncolo-gy[J]. Journal of Cancer Control and Treatment, 2019, 32(1): 1-6.

[3] VIALLARD C, LARRIVEE B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets[J]. Angiogenesis, 2017, 20(4): 409-426.

[4] PUEYO G, MESIA R, FIGUERAS A, et al. Cetuximab may inhib-it tumor growth and angiogenesis induced by ionizing radiation: a preclinical rationale for maintenance treatment after radiotherapy[J]. The Oncologist, 2010, 15(9): 976-986.

[5] JUNG J W, HWANG S Y, HWANG J S, et al. Ionising radiation induces changes associated with epithelial-mesenchymal transdif-ferentiation and increased cell motility of A549 lung epithelial cells[J]. European Journal of Cancer, 2007, 43(7): 1214-1224.

[6] MOREIN D, ERLICHMAN N, BEN-BARUCH A. Beyond cell motility: the expanding roles of chemokines and their receptors in malignancy[J]. Frontiers in Immunology, 2020, 11: 952.

[7] KOUKOURAKIS M I, GIATROMANOLAKI A, SIVRIDIS E, et al. Squamous cell head and neck cancer: evidence of angiogenic regeneration during radiotherapy[J]. Anticancer Research, 2001,21(6B): 4301-4309.

[8] 赵冬丽.乳腺癌血流动力学的超声表现与血管内皮生长因子及微血管密度的诊断标准[J].实用癌症杂志, 2016, 31(11): 1767-1769. ZHAO Dongli. Hemodynamic by sonographic of rreast cancer and vascular endothelial growth factor and microvascular density[J]. The Practical Journal of Cancer, 2016, 31(11): 1767-1769

[9] KOUKOURAKIS M I, KOUKOURAKIS I M, ARELAKI S, et al. Angiogenic regeneration de.nes loco-regional recurrence fol-lowing pre-operative radio-chemotherapy for rectal cancer: a pilot study[J]. Molecular Biology Reports, 2019, 46(2): 2147-2152.

[10] MARQUES F G, POLI E, MALAQUIAS J, et al. Low doses of ionizing radiation activate endothelial cells and induce angiogen-esis in peritumoral tissues[J]. Radiotherapy and Oncology, 2019,141: 256-261.

[11] ZHU H, ZHANG S. Hypoxia inducible factor-1α/vascular endo-thelial growth factor signaling activation correlates with response to radiotherapy and its inhibition reduces hypoxia-induced an-giogenesis in lung cancer[J]. Journal of Cellular Biochemistry, 2018, 119(9): 7707-7718.

[12] SOROLLA M A, PARISI E, SOROLLA A. Determinants of sen-sitivity to radiotherapy in endometrial cancer[J]. Cancers, 2020,12(7): 1906.

[13] BANYS-PALUCHOWSKI M, WITZEL I, RIETHDORF S, et al. The clinical relevance of serum vascular endothelial growth factor (VEGF) in correlation to circulating tumor cells and other serum biomarkers in patients with metastatic breast cancer[J]. Breast Cancer Research and Treatment, 2018, 172(1): 93-104.

[14] ANOOPKUMAR-DUKIE S, CONERE T, HOUSTON A, et al. The COX-2 inhibitor NS398 selectively sensitizes hypoxic HeLa cells to ionising radiation by mechanisms both dependent and independent of COX-2[J]. Prostaglandins & Other Lipid Media-tors, 2020, 148: 106422.

[15] MITRYAYEVA N A, GREBINYK L V, UZLENKOVA N E. In-fluence of combined action of X-radiation and cyclooxygenase-2-meloxivet inhibitor on VEGF and PGE-2 content in blood of rat-tumor carriers[J]. Problemy Radiatsiinoi Medytsyny Ta Ra-diobiolohii, 2019, 24: 261-269.

[16] KOVACS B, VAJDA E, NAGY E E. Regulatory effects and in-teractions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis[J]. International Journal of Molecular Sciences, 2019, 20(18): 4653.

[17] LIY, SUN R, ZOU J, et al. Dual roles of the AMP-activated pro-tein kinase pathway in angiogenesis[J]. Cells, 2019, 8(7): 752.

[18] HOLOTIUK V V, KRYZHANIVSKA A Y, CHURPIY I K, et al. Role of nitric oxide in pathogenesis of tumor growth and its pos-sible application in cancer treatment[J]. Experimental Oncology, 2019, 41(3): 210-215.

[19] WEI J L, WANG B, WANG H H, et al. Radiation-induced nor-mal tissue damage: oxidative stress and epigenetic mechanisms[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 3010342.

[20] SHARIFPANAH F, ALI E H, WARTENBERG M, et al. The milk thistle (Silybum marianum) compound silibinin stimulates leukopoiesis from mouse embryonic stem cells[J]. Phytotherapy Research : PTR, 2019, 33(2): 452-460.

[21] MARTíNEZ-LARA E, PE.A A, CALAHORRA J, et al. Hydroxy-tyrosol decreases the oxidative and nitrosative stress levels and promotes angiogenesis through HIF-1 independent mechanisms in renal hypoxic cells[J]. Food & Function, 2016, 7(1): 540-548.

[22] MASOUD G N, LI W. HIF-1α pathway: role, regulation and in-tervention for cancer therapy[J]. Acta Pharmaceutica Sinica B, 2015, 5(5): 378-389.

[23] ALIQUE M, SANCHEZ-LOPEZ E, BODEGA G, et al. Hypoxia-inducible factor-1α: the master regulator of endothelial cell senes-cence in vascular aging[J]. Cells, 2020, 9(1): 195.

[24] ZHU Y, LIU X, ZHAO P, et al. Celastrol suppresses glioma vas-culogenic mimicry formation and angiogenesis by blocking the PI3K/Akt/mTOR signaling pathway[J]. Frontiers in Pharmacology, 2020, 11: 25.

[25] KO E, BAEK S, KIM J, et al. Antitumor activity of combination therapy with metformin and trametinib in non-small cell lung cancer cells[J]. Development & Reproduction, 2020, 24(2): 113-123.

[26] THOMAS R P, NAGPAL S, IV M, et al. Macrophage exclusion after radiation therapy (MERT): a first in human phase I/II trial using a CXCR4 inhibitor in glioblastoma[J]. Clinical Cancer Re-search: an O.cial Journal of the American Association for Cancer Research, 2019, 25(23): 6948-6957.

[27] VENKATESULU B P, MAHADEVAN L S, ALIRU M L, et al. Radiation-induced endothelial vascular injury: a review of possible mechanisms[J]. JACC: Basic to Translational Science, 2018,3(4): 563-572.

[28] ZHENG Y F, LIU L, CHEN C, et al. The extracellular vesicles secreted by lung cancer cells in radiation therapy promote endo-thelial cell angiogenesis by transferring miR-23a[J]. PeerJ, 2017,5:e3627.

[29] MO F, XUYW, ZHANG J L, et al. Effects of hypoxia and radiation-induced exosomes on migration of lung cancer cells and angiogenesis of umbilical vein endothelial cells[J]. Radiation Research, 2020, 194(1): 71-80.

[30] MAW L, LIU R, HUANG L H, et al. Impact of polymorphisms in angiogenesis-related genes on clinical outcomes of radiotherapy in patients with nasopharyngeal carcinoma[J]. Clinical Experimen-tal Pharmacology Physiology, 2017, 44(5): 539-548.

[31] MARQUES F G, CARVALHO L, SOUSA J S, et al. Low doses of ionizing radiation enhance angiogenesis and consequently acceler-ate post-embryonic development but not regeneration in zebra.sh[J]. Scienti.c Reports, 2020, 10(1): 3137.

[32] JABBARI N, NAWAZ M, REZAIE J. Bystander effects of ion-izing radiation: conditioned media from X-ray irradiated MCF-7 cells increases the angiogenic ability of endothelial cells[J]. Cell Communication and Signaling, 2019, 17(1): 165.

[33] RODRIGUEZ-RUIZ M E, VITALE I, HARRINGTON K J, et al. Immunological impact of cell death signaling driven by radiation on the tumor microenvironment[J]. Nature Immunology, 2020,21(2): 120-134.

[34] FEDELE V, MELISI D. Permissive state of EMT: the role of im-mune cell compartment[J]. Frontiers in Oncology, 2020, 10: 587.

[35] LUND M E, CAMPBELL D H, WALSH B J. The role of glypi-can-1 in the tumour microenvironment[J]. Advances in Experi-mental Medicine and Biology, 2020, 1245: 163-176.

[36] CHEN X, ZHANG H, ZHU H, et al. Endostatin combined with radiotherapy suppresses vasculogenic mimicry formation through inhibition of epithelial-mesenchymal transition in esophageal cancer[J]. Tumour Biology: The Journal of The International So-ciety for Oncodevelopmental Biology and Medicine, 2016, 37(4): 4679-4688.

[37] CHEN Z, XU X H. Combining antiangiogenic therapy and radia-tion in nasopharyngeal carcinoma[J]. Saudi Medical Journal, 2015, 36(6): 659-664.

[38] URIBESALGO I, HOFFMANN D, ZHANG Y, et al. Apelin in-hibition prevents resistance and metastasis associated with anti-angiogenic therapy[J]. EMBO Molecular Medicine, 2019, 11(8): e9266.

[39] SIEMANN D W, CHAPLIN D J, HORSMAN M R. Realizing the potential of vascular targeted therapy: the rationale for combining vascular disrupting agents and anti-angiogenic agents to treat can-cer[J]. Cancer Investigation, 2017, 35(8): 519-534.

[40] CHEN LT, OH DY, RYU M H, et al. Anti-angiogenic therapy in patients with advanced gastric and gastroesophageal junction can-cer: a systematic review[J]. Cancer Research and Treatment: O.-cial Journal of Korean Cancer Association, 2017, 49(4): 851-868.

[41] ALASVAND M, ASSADOLLAHI V, AMBRA R, et al. Antian-giogenic e.ect of alkaloids[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 9475908.

[42] CHAO W R, AMIN K, SHI Y, et al. SR16388: a steroidal anti-angiogenic agent with potent inhibitory e.ect on tumor growth in vivo[J]. Angiogenesis, 2011, 14(1): 1-16.

[43] MATSUMOTO S, BATRA S, SAITO K, et al. Antiangiogenic agent sunitinib transiently increases tumor oxygenation and sup-presses cycling hypoxia[J]. Cancer Research, 2011, 71(20): 6350-6359.

[44] LIN Z, ZHANG Q, LUO W. Angiogenesis inhibitors as therapeutic agents in cancer: challenges and future directions[J]. European Journal of Pharmacology, 2016, 793: 76-81.

[45] LI S, SHEN L. Radiobiology of stereotactic ablative radiotherapy (SABR): perspectives of clinical oncologists[J]. Journal of Can-cer, 2020, 11(17): 5056-5068.

[46] LIU G, WANG C, E M. Mechanism and prospect of radiotherapy combined with apotatinib in the treatment of non-small cell lung cancer[J]. Chinese Journal of Lung Cancer, 2017, 20(12): 847-851.

[47] GUIPAUD O, JAILLET C, CLEMENT-COLMOU K, et al. The importance of the vascular endothelial barrier in the immune-inflammatory response induced by radiotherapy[J]. The British Journal of Radiology, 2018, 91(1089): 20170762.

[48] WU J B, TANG Y L, LIANG X H. Targeting VEGF pathway to normalize the vasculature: an emerging insight in cancer therapy[J]. Oncotargets and Therapy, 2018, 11: 6901-6909.

[49] BLOMBERG A J, NYHAN M M, BIND M A, et al. The role of ambient particle radioactivity in inflammation and endothelial function in an elderly cohort[J]. Epidemiology, 2020, 31(4): 499-508.

[50] GU X, CUN Y, LI M, et al. Human apurinic/apyrimidinic endo-nuclease siRNA inhibits the angiogenesis induced by X-ray ir-radiation in lung cancer cells[J]. International Journal of Medical Sciences, 2013, 10(7): 870-882.

[51] TEICHER B A, HOLDEN S A, ARA G, et al. Influence of an anti-angiogenic treatment on 9L gliosarcoma: oxygenation and response to cytotoxic therapy[J]. International Journal of Cancer, 1995, 61(5): 732-737.

[52] LIANG LJ, HU C X, WENYX, et al. Apatinib combined with local irradiation leads to systemic tumor control via reversal of immunosuppressive tumor microenvironment in lung cancer[J]. Cancer Research and Treatment: O.cial Journal of Korean Cancer Association, 2020, 52(2): 406-418.

[53] ANTHONY C, MLADKOVA-SUCHY N, ADAMSON D C. The evolving role of antiangiogenic therapies in glioblastoma multi-forme: current clinical signi.cance and future potential[J]. Expert Opinion on Investigational Drugs, 2019, 28(9): 787-797.

[54] CUI X, SONG P, ZHANG L. New advances in the treatment for small cell lung cancer[J]. Chinese Journal of Lung Cancer, 2019,22(6): 355-362.

[55] KANTHOU C, TOZER G. Targeting the vasculature of tumours: combining VEGF pathway inhibitors with radiotherapy[J]. The British Journal of Radiology, 2019, 92(1093): 20180405.

[56] AHN P H, MACHTAY M, ANNE P R, et al. Phase I trial using induction ciplatin, docetaxel, 5-FU and erlotinib gollowed by cis-platin, bevacizumab and erlotinib with concurrent radiotherapy for advanced head and neck cancer[J]. American Journal of Clinical Oncology, 2018, 41(5): 441-446.

[57] YOO D S, KIRKPATRICK J P, CRACIUNESCU O, et al. Pro-spective trial of synchronous bevacizumab, erlotinib, and concur-rent chemoradiation in locally advanced head and neck cancer[J]. Clinical Cancer Research, 2012, 18(5): 1404-1414.

[58] HAAS R L M, GELDERBLOM H, SLEIJFER S, et al. A phase I study on the combination of neoadjuvant radiotherapy plus pa-zopanib in patients with locally advanced soft tissue sarcoma of the extremities[J]. Acta Oncologica (Stockholm, Sweden), 2015,54(8): 1195-1201.

[59] CABEZAS-CAMARERO S, PUENTE J, MANZANO A, et al. Renal cell cancer metastases to esophagus and stomach success-fully treated with radiotherapy and pazopanib[J]. Anti-Cancer Drugs, 2015, 26(1): 112-116.

[60] VISWANATHAN A N, MOUGHAN J, MILLER B E, et al. NRG Oncology/RTOG 0921: a phase 2 study of postoperative intensity-modulated radiotherapy with concurrent cisplatin and bevacizumab followed by carboplatin and paclitaxel for patients with endome-trial cancer[J]. Cancer, 2015, 121(13): 2156-2163.

[61] CHEN S W, LIN L C, KUO Y C, et al. Phase 2 study of com-bined sorafenib and radiation therapy in patients with advanced hepatocellular carcinoma[J]. International Journal of Radiation Oncology?Biology?Physics, 2014, 88(5): 1041-1047.

[62] BAO Y, PENG F, ZHOU Q C, et al. Phase II trial of recombinant human endostatin in combination with concurrent chemoradio-therapy in patients with stage III non-small-cell lung cancer[J]. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology, 2015, 114(2): 161-166.

[63] ZHAI Y, HUI Z, WANG J, et al. Concurrent erlotinib and radio-therapy for chemoradiotherapy-intolerant esophageal squamous cell carcinoma patients: results of a pilot study[J]. Diseases of the Esophagus 2013, 26(5): 503-509.

[64] Common terminology criteriafor adverse events (CTCAE) version 5.0[S]. Waltham, MA, U.S. Department of Health and Human Services, 2017.

[65] MAW L, LIU R, HUANG L H, et al. Impact of polymorphisms in angiogenesis-related genes on clinical outcomes of radiotherapy in patients with nasopharyngeal carcinoma[J]. Clinical and Experi-mental Pharmacology & Physiology, 2017, 44(5): 539-548.

[66] CAI J, ZHENG J, SHEN J, et al. A radiomics model for predicting the response to bevacizumab in brain necrosis after radiotherapy[J]. Clinical Cancer Research: an O.cial Journal of the American Association for Cancer Research, 2020, 26(20): 5438-5447.

[67] MEHTA R K, PAL S, KONDAPI K, et al. Low dose Hsp90 inhibi-tor selectively radiosensitizes HNSCC and pancreatic xenografts[J]. Clinical Cancer Research: an O.cial Journal of the American Association for Cancer Research, 2020, 26(19): 5246-5257.

[68] 徐阿巧,赵振华,杨建峰,等.磁共振成像定量灌注参数评价子宫肿瘤血管生成的研究进展[J].中国医学科学院学报,2018, 40(5): 705-709. XU Aqiao, ZHAO Zhenhua, YANG Jianfeng, et al. Evaluation of uterine tumor angiogenesis with quantitative magnetic resonance imaging perfusion parameters[J]. Acta Academiae Medicinae Sinicae, 2018, 40(5): 705-709.

[69] KICKINGEREDER P, BRUGNARA G, HANSEN M B, et al. Noninvasive characterization of tumor angiogenesis and oxy-genation in bevacizumab-treated recurrent glioblastoma by using dynamic susceptibility MRI: secondary analysis of the European Organization for Research and Treatment of Cancer 26101 Trial[J]. Radiology, 2020, 297(1): 164-175.

黄皓, 周光明, 胡文涛. 放射治疗相关肿瘤血管生成的研究进展[J]. 激光生物学报, 2020, 29(6): 481. HUANG Hao, ZHOU Guangming, HU Wentao. Research Progress on Radiotherapy-related Angiogenesis[J]. Acta Laser Biology Sinica, 2020, 29(6): 481.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!