光学 精密工程, 2020, 28 (4): 885, 网络出版: 2020-07-02   

符合阿贝原则的数控机床几何误差建模

Geometric error model of CNC machine tools based on Abbe principle
作者单位
1 大连理工大学 机械工程学院, 辽宁 大连 116024
2 襄阳华中科技大学先进制造工程研究院, 湖北 襄阳 441053
摘要
为提高现有数控机床空间误差分析方法的准确度, 本文基于阿贝原则对齐次转换矩阵(HTM)几何误差补偿模型进行优化。首先, 推导出XYFZ型三轴机床适用的HTM几何误差补偿模型并给出模型正确使用的前提条件; 然后, 基于阿贝原则分析了三轴机床的空间误差传递机理, 指出阿贝误差对机床定位精度的影响, 给出理论计算公式并在机床运动轴上进行实验验证; 最后, 基于阿贝原则和布莱恩原则对现有的HTM几何误差补偿模型进行优化, 采用该模型拟合体对角线空间误差, 并与实测机床体对角线误差进行对比验证。现有HTM几何补偿模型可将机床空间误差由41.15 μm补偿至16.37 μm, 补偿率为60.22%; 优化后的补偿模型可将机床空间误差补偿至5.32 μm, 补偿率为87.07%, 提高了26.85%。实验结果表明, 优化后的补偿模型更加合理, 进一步改善了空间误差的补偿精度。
Abstract
In order to address the shortcomings of the existing space error analysis methods of CNC machine tools, the geometry error compensation model was optimized based on Abbe principle. First, the geometry error compensation model of the three-axis machine tool was deduced, and the precondition for the correct usage of the model was provided. Second, the mechanism of spatial error transfer of three-axis machine tool was analyzed, based on the Abbe principle. The influence of Abbe error on the positioning accuracy of machine tool was determined, and the theoretical calculation formula was provided and verified by conducting experiments on the moving axis of machine tool. Finally, the existing geometric error compensation model of HTM was optimized based on the Abbe principle and Bryan principle.This model was used to fit the diagonal space error, and compared with the actual measured diagonal error of the machine tool. The existing HTM geometric compensation model can compensate for the machine tool space error, altering it from 41.15 μm to 16.37 μm, with a compensation rate of 60.22%. The optimized compensation model can compensate for the machine tool space error, altering it to 5.32 μm, with a compensation rate of 87.07%, which is an increase of 26.85%. The experimental results show that the optimized compensation model is more reasonable, and further improves the accuracy of space error compensation.
参考文献

[1] 何振亚. 数控机床三维空间误差建模及补偿研究[D].浙江: 浙江大学,2010.

    何振亚. 数控机床三维空间误差建模及补偿研究[D].浙江: 浙江大学,2010.

    HE ZH Y. Modeling and Compensating for 3-Dimension Volumetric Errors of CNC Machine Tools[D]. Zhejiang: Zhejiang University,2010. (in Chinese)

    HE ZH Y. Modeling and Compensating for 3-Dimension Volumetric Errors of CNC Machine Tools[D]. Zhejiang: Zhejiang University,2010. (in Chinese)

[2] 朱赤洲, 陈蔚芳, 赵鹏, 等. 数控机床三维空间误差建模及补偿技术研究[J]. 组合机床与自动化加工技术, 2012(4): 16-19, 24.

    朱赤洲, 陈蔚芳, 赵鹏, 等. 数控机床三维空间误差建模及补偿技术研究[J]. 组合机床与自动化加工技术, 2012(4): 16-19, 24.

    ZHU CH ZH, CHEN W F, ZHAO P, et al.. Research on compensation technique for 3-dimension volumetric errors of CNC machine tools[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2012(4): 16-19, 24.(in Chinese)

    ZHU CH ZH, CHEN W F, ZHAO P, et al.. Research on compensation technique for 3-dimension volumetric errors of CNC machine tools[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2012(4): 16-19, 24.(in Chinese)

[3] 沈金华, 杨建国, 王正平. 数控机床空间误差分析及补偿[J]. 上海交通大学学报, 2008, 42(7): 1060-1063.

    沈金华, 杨建国, 王正平. 数控机床空间误差分析及补偿[J]. 上海交通大学学报, 2008, 42(7): 1060-1063.

    SHEN J H, YANG J G, WANG ZH P. Analysis and compensation on volumetric errors for NC machining tools[J]. Journal of Shanghai Jiaotong University, 2008,42(7): 1060-1063. (in Chinese)

    SHEN J H, YANG J G, WANG ZH P. Analysis and compensation on volumetric errors for NC machining tools[J]. Journal of Shanghai Jiaotong University, 2008,42(7): 1060-1063. (in Chinese)

[4] 倪军. 数控机床误差补偿研究的回顾及展望[J]. 中国机械工程, 1997, 8(1): 29-33,122.

    倪军. 数控机床误差补偿研究的回顾及展望[J]. 中国机械工程, 1997, 8(1): 29-33,122.

    NI J. A perspective review of CNC machine accuracy enhancement through real-time error compensation[J]. China Mechanical Engineering, 1997, 8(1): 29-33,122.(in Chinese)

    NI J. A perspective review of CNC machine accuracy enhancement through real-time error compensation[J]. China Mechanical Engineering, 1997, 8(1): 29-33,122.(in Chinese)

[5] 李圣怡,戴一帆,尹自强. 精密和超精密机床精度建模技术[M].长沙: 国防科技大学出版社, 2007.

    李圣怡,戴一帆,尹自强. 精密和超精密机床精度建模技术[M].长沙: 国防科技大学出版社, 2007.

    LI SH Y, DAI Y F, YIN Z Q. Accuracy Modeling Technology of Precision and Ultra-Precision Machine Tool[M]. Changsha: National University of Defense Technology Press,2007. (in Chinese)

    LI SH Y, DAI Y F, YIN Z Q. Accuracy Modeling Technology of Precision and Ultra-Precision Machine Tool[M]. Changsha: National University of Defense Technology Press,2007. (in Chinese)

[6] 董泽园, 李杰, 刘辛军, 等. 数控机床两种几何误差建模方法有效性试验研究[J]. 机械工程学报, 2019, 55(5): 137-147.

    董泽园, 李杰, 刘辛军, 等. 数控机床两种几何误差建模方法有效性试验研究[J]. 机械工程学报, 2019, 55(5): 137-147.

    DONG Z Y, LI J, LIU X J, et al.. Experimental study on the effectiveness of two different geometric error modeling methods for machine tools[J]. Journal of Mechanical Engineering, 2019, 55(5): 137-147.(in Chinese)

    DONG Z Y, LI J, LIU X J, et al.. Experimental study on the effectiveness of two different geometric error modeling methods for machine tools[J]. Journal of Mechanical Engineering, 2019, 55(5): 137-147.(in Chinese)

[7] 李杰, 谢福贵, 刘辛军, 等. 五轴数控机床空间定位精度改善方法研究现状[J]. 机械工程学报, 2017, 53(7): 113-128.

    李杰, 谢福贵, 刘辛军, 等. 五轴数控机床空间定位精度改善方法研究现状[J]. 机械工程学报, 2017, 53(7): 113-128.

    LI J, XIE F G, LIU X J, et al.. Analysis on the research status of volumetric positioning accuracy improvement methods for five-axis NC machine tools[J]. Journal of Mechanical Engineering, 2017, 53(7): 113-128.(in Chinese)

    LI J, XIE F G, LIU X J, et al.. Analysis on the research status of volumetric positioning accuracy improvement methods for five-axis NC machine tools[J]. Journal of Mechanical Engineering, 2017, 53(7): 113-128.(in Chinese)

[8] HARTENBERG R S, DENAVIT J. A kinematic notation for lower pair mechanisms based on matrices[J]. Journal of Applied Mechanics, 1955, 77(2): 215-221.

    HARTENBERG R S, DENAVIT J. A kinematic notation for lower pair mechanisms based on matrices[J]. Journal of Applied Mechanics, 1955, 77(2): 215-221.

[9] FERREIRA P M, LIU C R, MERCHANT E. A contribution to the analysis and compensation of the geometric error of a machining center[J]. CIRP Annals, 1986, 35(1): 259-262.

    FERREIRA P M, LIU C R, MERCHANT E. A contribution to the analysis and compensation of the geometric error of a machining center[J]. CIRP Annals, 1986, 35(1): 259-262.

[10] 刘又午,刘丽冰,赵小松,等. 数控机床误差补偿技术研究[J].中国机械工程,1998,9(12): 54-58,5.

    刘又午,刘丽冰,赵小松,等. 数控机床误差补偿技术研究[J].中国机械工程,1998,9(12): 54-58,5.

    LIU Y W, LIU L B, ZHAO X S, et al.. Research on error compensation technology of NC machine tools[J]. China Mechanical Engineering,1998,9(12): 54-58,5. (in Chinese)

    LIU Y W, LIU L B, ZHAO X S, et al.. Research on error compensation technology of NC machine tools[J]. China Mechanical Engineering,1998,9(12): 54-58,5. (in Chinese)

[11] ZHU S W, DING G F, QIN S F, et al.. Integrated geometric error modeling, identification and compensation of CNC machine tools[J]. International Journal of Machine Tools & Manufacture, 2012, 52(1): 24-29.

    ZHU S W, DING G F, QIN S F, et al.. Integrated geometric error modeling, identification and compensation of CNC machine tools[J]. International Journal of Machine Tools & Manufacture, 2012, 52(1): 24-29.

[12] LI J, XIE F G, LIU X J. Geometric error modeling and sensitivity analysis of a five-axis machine tool[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(9): 2037-2051.

    LI J, XIE F G, LIU X J. Geometric error modeling and sensitivity analysis of a five-axis machine tool[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(9): 2037-2051.

[13] 粟时平. 多轴数控机床精度建模与误差补偿方法研究[D].长沙: 中国人民解放军国防科学技术大学,2002.

    粟时平. 多轴数控机床精度建模与误差补偿方法研究[D].长沙: 中国人民解放军国防科学技术大学,2002.

    SU SH P. Study on the Methods of Precision Modeling and Error Compensation for Multi-Axis CNC Machine Tools[D].Changsha: National University of Defense Technology, 2002. (in Chinese)

    SU SH P. Study on the Methods of Precision Modeling and Error Compensation for Multi-Axis CNC Machine Tools[D].Changsha: National University of Defense Technology, 2002. (in Chinese)

[14] 陈东菊. 复合数控磨床螺纹成形磨削误差辨识及补偿[C].2015光学精密工程论坛论文集长春,2015: 359-365.

    陈东菊. 复合数控磨床螺纹成形磨削误差辨识及补偿[C].2015光学精密工程论坛论文集长春,2015: 359-365.

    CHEN D J. Geometric error identification and compensation of complex CNC grinding machine[C]. 2015 Optical Precision Engineering Forum Proceedings. Changchun, 2015: 359-365. (in Chinese)

    CHEN D J. Geometric error identification and compensation of complex CNC grinding machine[C]. 2015 Optical Precision Engineering Forum Proceedings. Changchun, 2015: 359-365. (in Chinese)

[15] 谢春, 张为民. 车铣复合加工中心综合误差检测及补偿策略[J]. 光学 精密工程, 2014,22(4): 1004-1011.

    谢春, 张为民. 车铣复合加工中心综合误差检测及补偿策略[J]. 光学 精密工程, 2014,22(4): 1004-1011.

    XIE CH, ZHANG W M. Comprehensive measurement errors of 5-axis turning-milling centers and their compensation strategies[J]. Opt. Precision Eng., 2014, 22(4): 1004-1011.(in Chinese)

    XIE CH, ZHANG W M. Comprehensive measurement errors of 5-axis turning-milling centers and their compensation strategies[J]. Opt. Precision Eng., 2014, 22(4): 1004-1011.(in Chinese)

[16] 郭世杰, 姜歌东, 梅雪松, 等. 转台-摆头式五轴机床几何误差测量及辨识[J]. 光学 精密工程, 2018, 26(11): 2684-2694.

    郭世杰, 姜歌东, 梅雪松, 等. 转台-摆头式五轴机床几何误差测量及辨识[J]. 光学 精密工程, 2018, 26(11): 2684-2694.

    GUO SH J, JIANG G D, MEI X S, et al.. Measurement and identification of geometric errors for turntable-tilting head type five-axis machine tools[J]. Opt. Precision Eng., 2018, 26(11): 2684-2694.(in Chinese)

    GUO SH J, JIANG G D, MEI X S, et al.. Measurement and identification of geometric errors for turntable-tilting head type five-axis machine tools[J]. Opt. Precision Eng., 2018, 26(11): 2684-2694.(in Chinese)

[17] FAN K C, WANG T H, WANG C H, et al.. Development of an Abbé error compensator for NC machine tools[C]. Proceedings of the 37th International MATADOR Conference. Springer Science & Business Media, 2012, 4: 105.

    FAN K C, WANG T H, WANG C H, et al.. Development of an Abbé error compensator for NC machine tools[C]. Proceedings of the 37th International MATADOR Conference. Springer Science & Business Media, 2012, 4: 105.

[18] VAHEBI M, AREZOO B. Accuracy improvement of volumetric error modeling in CNC machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5): 2243-2257.

    VAHEBI M, AREZOO B. Accuracy improvement of volumetric error modeling in CNC machine tools[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(5): 2243-2257.

[19] 范光照,曾百由. 精密机械精度基础[M].台北: 高立图书出版社, 2016.

    范光照,曾百由. 精密机械精度基础[M].台北: 高立图书出版社, 2016.

    FAN G ZH, ZENG B Y. Precision Machinery Precision Foundation[M]. Taibei: Gaoli Books Press, 2016. (in Chinese)

    FAN G ZH, ZENG B Y. Precision Machinery Precision Foundation[M]. Taibei: Gaoli Books Press, 2016. (in Chinese)

[20] LI Z H, FENG W L, YANG J G, et al.. An investigation on modeling and compensation of synthetic geometric errors on large machine tools based on moving least squares method[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232(3): 412-427.

    LI Z H, FENG W L, YANG J G, et al.. An investigation on modeling and compensation of synthetic geometric errors on large machine tools based on moving least squares method[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018, 232(3): 412-427.

[21] LIU H W, XIANG H, CHEN J H, et al.. Measurement and compensation of machine tool geometry error based on Abbe principle[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98: 2769-2774.

    LIU H W, XIANG H, CHEN J H, et al.. Measurement and compensation of machine tool geometry error based on Abbe principle[J]. The International Journal of Advanced Manufacturing Technology, 2018, 98: 2769-2774.

[22] ISO 230-1. Test code for machine tools-Part 1: Geometric accuracy of machine operating under no-load or quasi-static conditions[S]. International Organization for Standardization, 2012.

    ISO 230-1. Test code for machine tools-Part 1: Geometric accuracy of machine operating under no-load or quasi-static conditions[S]. International Organization for Standardization, 2012.

[23] ABB E. Meapparate für physiker[J]. Zeitschrift für Instrumentenkunde,1890,10: 446-448.

    ABB E. Meapparate für physiker[J]. Zeitschrift für Instrumentenkunde,1890,10: 446-448.

[24] BRYAN J B. The Abbé principle revisit: An updated interpretation[J]. Precision Engineering, 1979,1: 129-132. ISO 230-6.

    BRYAN J B. The Abbé principle revisit: An updated interpretation[J]. Precision Engineering, 1979,1: 129-132. ISO 230-6.

[25] Test code for machine tools-Part 6: Determination of positioning accuracy on body and face diagonals[S]. International Organization for Standardization, 2002.

    Test code for machine tools-Part 6: Determination of positioning accuracy on body and face diagonals[S]. International Organization for Standardization, 2002.

赵壮, 娄志峰, 张忠宁, 王晓东, 范光照, 陈国华, 向华. 符合阿贝原则的数控机床几何误差建模[J]. 光学 精密工程, 2020, 28(4): 885. ZHAO Zhuang, LOU Zhi-feng, ZHANG Zhong-ning, WANG Xiao-dong, FAN Guang-zhao, CHEN Guo-hua, XIANG Hua. Geometric error model of CNC machine tools based on Abbe principle[J]. Optics and Precision Engineering, 2020, 28(4): 885.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!