中国激光, 2019, 46 (3): 0302005, 网络出版: 2019-05-09   

扫描速率对激光熔覆Cu80Fe20偏晶涂层组织与耐磨性能的影响 下载: 859次

Effects of Scanning Speed on Microstructure and Wear Resistance of Cu80Fe20 Immiscible Coatings Prepared by Laser Cladding
作者单位
天津工业大学激光技术研究所, 天津 300387
引用该论文

赵淑珍, 金剑波, 谢敏, 许永波, 戴晓琴, 周圣丰. 扫描速率对激光熔覆Cu80Fe20偏晶涂层组织与耐磨性能的影响[J]. 中国激光, 2019, 46(3): 0302005.

Shuzhen Zhao, Jianbo Jin, Min Xie, Yongbo Xu, Xiaoqin Dai, Shengfeng Zhou. Effects of Scanning Speed on Microstructure and Wear Resistance of Cu80Fe20 Immiscible Coatings Prepared by Laser Cladding[J]. Chinese Journal of Lasers, 2019, 46(3): 0302005.

参考文献

[1] 方正春. 耐热和导电铜合金发展现状[J]. 材料开发与应用, 1997, 12(4): 27-31.

    Fang Z C. Present status of heat resistant and electrical conductive copper alloys[J]. Development and Application of Materials, 1997, 12(4): 27-31.

[2] Rawson A, Kisi E, Sugo H, et al. Effective conductivity of Cu-Fe and Sn-Al miscibility gap alloys[J]. International Journal of Heat and Mass Transfer, 2014, 77: 395-405.

[3] 张生龙, 尹志民. 高强高导铜合金设计思路及其应用[J]. 材料导报, 2003, 17(11): 26-29.

    Zhang S L, Yin Z M. High-strength and high-conductivity copper alloys: designing considerations and their application[J]. Materials Review, 2003, 17(11): 26-29.

[4] Tenwick M J, Davies H A. Enhanced strength in high conductivity copper alloys[J]. Materials Science and Engineering, 1988, 98: 543-546.

[5] 袁孚胜, 钟海燕. 引线框架铜合金材料的研究现状及发展趋势[J]. 有色冶金设计与研究, 2015, 36(2): 36-38.

    Yuan F S, Zhong H Y. Research status and development trend of lead frame copper alloy materials[J]. Nonferrous Metals Engineering & Research, 2015, 36(2): 36-38.

[6] Zhou S F, Wu C, Zhang T Y, et al. Carbon nanotube- and Fep-reinforced copper-matrix composites by laser induction hybrid rapid cladding[J]. Scripta Materialia, 2014, 76: 25-28.

[7] Zhou S F, Lei J B, Xiong Z, et al. Synthesis of Fep/Cu-Cup/Fe duplex composite coatings by laser cladding[J]. Materials & Design, 2016, 97: 431-436.

[8] Dai X Q, Xie M, Zhou S F, et al. Formation mechanism and improved properties of Cu95Fe5 homogeneous immiscible composite coating by the combination of mechanical alloying and laser cladding[J]. Journal of Alloys and Compounds, 2018, 740: 194-202.

[9] 董江, 陈岁元, 刘大亮, 等. 铜合金表面激光原位制备钴基合金涂层的结构与机制[J]. 中国激光, 2009, 36(5): 1302-1307.

    Dong J, Chen S Y, Liu D L, et al. Structure and mechanism of Co-based alloy coating with laser inducing in-situ synthesis on the surface of copper alloy[J]. Chinese Journal of Lasers, 2009, 36(5): 1302-1307.

[10] Abbas S F, Kim T S. Effect of lattice strain on the electrical conductivity of rapidly solidified copper-iron metastable alloys[J]. Journal of Alloys and Compounds, 2018, 732: 129-135.

[11] Munitz A, Abbaschian R. Microstructure of Cu-Co alloys solidified at various supercoolings[J]. Metallurgical and Materials Transactions A, 1996, 27(12): 4049-4059.

[12] Li D, Robinson M B, Rathz T J, et al. Direct determination of the metastable liquid miscibility gap in undercooled Cu-Co alloys[J]. Materials Letters, 1998, 36(1/2/3/4): 152-156.

[13] CuriottoS, Pryds NH, JohnsonE, et al. Effect of cooling rate on the solidification of Cu58Co42[J]. Materials Science and EngineeringA, 2007, 449/450/451: 644- 648.

[14] Wang C P. Formation of immiscible alloy powders with egg-type microstructure[J]. Science, 2002, 297(5583): 990-993.

[15] Nagase T, Suzuki M, Tanaka T. Formation of amorphous phase with crystalline globules in Fe-Cu-Nb-B immiscible alloys[J]. Journal of Alloys and Compounds, 2015, 619: 267-274.

[16] Dai X Q, Zhou S F, Wang M F, et al. Microstructure evolution of phase separated Fe-Cu-Cr-C composite coatings by laser induction hybrid cladding[J]. Surface and Coatings Technology, 2017, 324: 518-525.

[17] Liu S C, Jie J C, Guo Z K, et al. Solidification microstructure evolution and its corresponding mechanism of metastable immiscible Cu80Fe20 alloy with different cooling conditions[J]. Journal of Alloys and Compounds, 2018, 742: 99-106.

[18] Jiao X Y, Wang J, Wang C M, et al. Effect of laser scanning speed on microstructure and wear properties of T15M cladding coating fabricated by laser cladding technology[J]. Optics and Lasers in Engineering, 2018, 110: 163-171.

[19] Wang X Y, Zhou S F, Dai X Q, et al. Evaluation and mechanisms on heat damage of WC particles in Ni60/WC composite coatings by laser induction hybrid cladding[J]. International Journal of Refractory Metals and Hard Materials, 2017, 64: 234-241.

[20] 谢敏, 戴晓琴, 赵淑珍, 等. 激光熔覆自组装Cu92Fe8偏晶复合涂层的相分离特征与性能[J]. 中国激光, 2018, 45(7): 0702010.

    Xie M, Dai X Q, Zhao S Z, et al. Phase separated characteristics and properties of self-assembled Cu92Fe8 immiscible composite coating by laser cladding[J]. Chinese Journal of Lasers, 2018, 45(7): 0702010.

[21] Dai X Q, Zhou S F, Wang M F, et al. Effect of substrate types on the microstructure and properties of Cu65Fe35 composite coatings by laser induction hybrid cladding[J]. Journal of Alloys and Compounds, 2017, 722: 173-182.

[22] Dai X Q, Xie M, Zhou S F, et al. Formation and properties of a self-assembled Cu-Fe-Ni-Cr-Si immiscible composite by laser induction hybrid cladding[J]. Journal of Alloys and Compounds, 2018, 742: 910-917.

[23] Zhou S F, Dai X Q, Xie M, et al. Phase separation and properties of Cu-Fe-Cr-Si-C immiscible nanocomposite by laser induction hybrid cladding[J]. Journal of Alloys and Compounds, 2018, 741: 482-488.

[24] Zeng D W, Xie C S, Wang M Q. In situ synthesis and characterization of Fep/Cu composite coating on SAE 1045 carbon steel by laser cladding[J]. Materials Science and Engineering A, 2003, 344(1/2): 357-364.

[25] Kök M, Özdin K. Wear resistance of aluminium alloy and its composites reinforced by Al2O3 particles[J]. Journal of Materials Processing Technology, 2007, 183(2/3): 301-309.

[26] Lei J B, Shi C, Zhou S F, et al. Enhanced corrosion and wear resistance properties of carbon fiber reinforced Ni-based composite coating by laser cladding[J]. Surface and Coatings Technology, 2018, 334: 274-285.

[27] Zhou S F, Lei J B, Dai X Q, et al. A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding[J]. International Journal of Refractory Metals and Hard Materials, 2016, 60: 17-27.

[28] Kumar S, Panwar R S, Pandey O P. Effect of dual reinforced ceramic particles on high temperature tribological properties of aluminum composites[J]. Ceramics International, 2013, 39(6): 6333-6342.

[29] Kumar S, Sharma V, Panwar R S, et al. Wear behavior of dual particle size (DPS) zircon sand reinforced aluminum alloy[J]. Tribology Letters, 2012, 47(2): 231-251.

[30] Sharma V, Kumar S, Panwar R S, et al. Microstructural and wear behavior of dual reinforced particle (DRP) aluminum alloy composite[J]. Journal of Materials Science, 2012, 47(18): 6633-6646.

[31] 曾晓雁. 激光熔覆金属陶瓷复合层中陶瓷相的行为研究[D]. 武汉: 华中理工大学, 1993.

    Zeng XY. Behavior of ceramic phase in laser cladding cermet composite layer[D]. Wuhan: Huazhong University of Science and Technology, 1993.

赵淑珍, 金剑波, 谢敏, 许永波, 戴晓琴, 周圣丰. 扫描速率对激光熔覆Cu80Fe20偏晶涂层组织与耐磨性能的影响[J]. 中国激光, 2019, 46(3): 0302005. Shuzhen Zhao, Jianbo Jin, Min Xie, Yongbo Xu, Xiaoqin Dai, Shengfeng Zhou. Effects of Scanning Speed on Microstructure and Wear Resistance of Cu80Fe20 Immiscible Coatings Prepared by Laser Cladding[J]. Chinese Journal of Lasers, 2019, 46(3): 0302005.

本文已被 9 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!