作者单位
摘要
1 天津工业大学物理科学与技术学院激光技术研究所, 天津 300387
2 暨南大学先进耐磨蚀及功能材料研究院, 广东 广州 510632
采用激光熔覆技术制备了碳纤维增强316L不锈钢,研究了扫描速度对碳纤维增强316L不锈钢显微结构、显微硬度和耐磨性的影响。结果表明:激光熔覆316L不锈钢由γ-Fe相组成,而激光熔覆碳纤维增强316L不锈钢主要由M23C6、γ-Fe和α-Fe组成,其中M23C6均匀地分布在γ-Fe和α-Fe树枝晶间;随着扫描速度增大,枝晶臂间距减小,显微硬度先增加后减小,耐磨性先增强后降低;当扫描速度为12 mm/s时,激光熔覆碳纤维增强316L不锈钢的耐磨性最好,相对于未加碳纤维的激光熔覆316L不锈钢提高了约25.3%。
激光技术 316L不锈钢 碳纤维 扫描速度 显微组织 耐磨性能 
中国激光
2020, 47(5): 0502010
作者单位
摘要
天津工业大学物理科学与技术学院激光技术研究所, 天津 300387
采用激光选区熔化技术成功制备了TiN增强钛基复合材料,并研究了TiN含量对钛基复合材料微观结构、显微硬度和摩擦磨损行为的影响。结果表明:随着TiN含量的增加,α-Ti相衍射峰发生偏移,TiN衍射峰强度逐渐增强,复合材料的显微硬度从纯钛的(228±13) HV逐渐增大到(403±20) HV;当添加TiN的质量分数为7.5%时,复合材料的磨损性能比纯钛提高了29.2%。TiN颗粒的加入使钛基复合材料的硬度与磨损性能显著提升。
激光技术 激光选区熔化 TiN颗粒 钛基复合材料 耐磨性能 
中国激光
2019, 46(11): 1102013
作者单位
摘要
天津工业大学物理科学与技术学院激光技术研究所, 天津 300387
采用动电位极化曲线和电化学阻抗谱研究了激光选区熔化成形CP-Ti和Ti-5%TiN复合材料在人工模拟体液Hank溶液中的腐蚀性能,结果表明:激光选区熔化成形CP-Ti主要由针状α-Ti相组成,加入的TiN颗粒不仅可以与钛基体形成良好的界面结合,还可以细化α-Ti晶粒并产生更多的晶界;在Hank溶液中,激光选区熔化成形Ti-5%TiN复合材料具有比激光选区熔化成形CP-Ti更好的耐腐蚀性能,这是因为作为微阴极的TiN颗粒均匀地分布在钛基体内,可以加速钛基体的阳极溶解过程,使Ti-5%TiN复合材料能够优先进入钝化状态。
激光技术 激光选区熔化 Ti-TiN复合材料 耐腐蚀性能 钝化膜 
中国激光
2019, 46(9): 0902005
作者单位
摘要
天津工业大学激光技术研究所, 天津 300387
采用激光熔覆技术制备了Cu80Fe20偏晶涂层,研究了扫描速率对液相分离特征以及偏晶涂层显微硬度、耐磨性能的影响。研究结果表明: Cu80Fe20偏晶涂层内出现了分层现象,大量由体心立方结构α-Fe、面心立方结构γ-Fe组成的富铁颗粒弥散分布于上层的面心立方ε-Cu基体内,大量面心立方ε-Cu富铜颗粒分布于下层的α-Fe基体内;随着激光扫描速率增大,激光熔池的冷却速率增大,富铁颗粒粒径逐渐减小,面密度逐渐增大,相邻富铁颗粒间的间距减小,富铁颗粒对铜基体的阴影保护效应增强,使得偏晶涂层的显微硬度与耐磨性能增加,且均优于黄铜。
激光技术 激光熔覆 扫描速率 Cu-Fe合金 偏晶涂层 液相分离 冷却速率 耐磨性能 
中国激光
2019, 46(3): 0302005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!