激光与光电子学进展, 2018, 55 (10): 103005, 网络出版: 2018-10-14  

微波探针对叶菜激光诱导击穿光谱信号增强效果的影响 下载: 524次

Effect of Microwave Probes on Enhancement of Laser-Induced Breakdown Spectral Signal of Leaf Vegetable
作者单位
1 江西农业大学工学院, 江西 南昌 330045
2 江西省现代农业装备重点实验室, 江西 南昌 330045
3 江西省果蔬采后处理关键技术与质量安全协同创新中心, 江西 南昌 330045
摘要
微波产生形式会影响激光诱导击穿光谱(LIBS)中等离子体光谱信号的强度和稳定性。实验选择重金属镉(Cd)质量分数为1.5×10-5的叶菜样品作为研究对象, 对比分析了双针、单针、环形、双环4种微波探针和前、中、后3个探针位置处传导微波对等离子体光谱信号强度和稳定性的影响, 以优化微波辅助LIBS(MA-LIBS)实验中的微波作用形式, 达到更好的辅助增强效果。分析MA-LIBS光谱图发现, Cd元素的等离子体光谱信号增强了2.58倍, Si、P元素的等离子体光谱信号强度分别增强了2.70倍和3.08倍, 有较好的增强效果。这表明:选择合适形状的微波探针和微波加载位置可以提高微波辅助增强效果, 增强LIBS技术在低浓度样品检测方面的应用性能。
Abstract
The methods that are used to produce microwaves can affect the strength and stability of plasma spectral signal in laser-induced breakdown spectroscopy (LIBS). Leaf vegetables that contain cadmium (Cd) at mass fraction of 1.5×10-5 are used as the subjects of this study. The influences of microwave probe with four shapes, such as the single-needle, double-needle, single-ring, and double-rings microwave probes, are studied. The three microwave loading positions, which include the front, middle, and end of the probes, are also investigated. The form of microwave function in the microwave assisted LIBS (MA-LIBS) experiment is optimized to achieve better auxiliary enhancement effect. After analyzing the spectral lines of the MA-LIBS, we find that the plasma spectral signal of Cd element is increased by 2.58 times, whereas Si and P elements is increased by 2.70 and 3.08 times, respectively. Suitable microwave probe shapes and loading positions can improve the effects of microwave-assisted enhancement, which further improves the performance of the LIBS technology in the application fields.
参考文献

[1] 孟德硕, 赵南京, 马明俊, 等. 基于激光诱导击穿光谱技术的土壤快速分类方法研究[J]. 光谱学与光谱分析, 2017, 37(1): 241-246.

    Meng D S, Zhao N J, Ma M J, et al. Rapid soil classification with laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2017, 37(1): 241-246.

[2] 王金梅, 颜海英, 郑培超, 等. 基于激光诱导击穿光谱定量检测土壤中营养元素的研究[J]. 中国激光, 2017, 44(11): 1111002.

    Wang J M, Yan H Y, Zheng P C, et al. Quantitative detection of nutrient elements in soil based on laser induced breakdown spectroscopy[J]. Chinese Journal of Lasers, 2017, 44(11): 1111002.

[3] 王希林, 洪骁, 王晗, 等. 室温硫化硅橡胶的激光诱导击穿光谱特性与老化研究[J]. 中国电机工程学报, 2017, 37(10): 2774-2782.

    Wang X L, Hong X, Wang H, et al. Study of spectral characteristics and aging performance of room temperature vulcanized silicone rubber using laser-induced breakdown spectroscopy[J]. Proceedings of the CSEE, 2017, 37(10): 2774-2782.

[4] 杨宇翔, 康娟, 王亚蕊, 等. 水中铅元素的激光诱导击穿光谱-激光诱导荧光超灵敏检测[J]. 光学学报, 2017, 37(11): 1130001.

    Yang Y X, Kang J, Wang Y R, et al. Super sensitive detection of lead in water by laser-induced breakdown spectroscopy combined with laser-induced fluorescence technique[J]. Acta Optica Sinica, 2017, 37(11): 1130001.

[5] 王亚军, 袁心强, 石斌, 等. 缅甸翡翠中铁元素的激光诱导击穿光谱定量检测[J]. 光谱学与光谱分析, 2018, 38(1): 263-266.

    Wang Y J, Yuan X Q, Shi B, et al. The research for quantitative analysis of iron in Myanmar jades using laser induced breakdown spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 263-266.

[6] 胡杨, 李子涵, 吕涛. 激光诱导击穿光谱结合人工神经网络测定地质标样中的铁含量[J]. 激光与光电子学进展, 2017, 54(5): 053003.

    Hu Y, Li Z H, Lü T. Quantitative measurement of iron content in geological standard samples by laser-induced breakdown spectroscopy combined with artificial neural network[J]. Laser & Optoelectronics Progress, 2017, 54(5): 053003.

[7] 林庆宇, 段忆翔. 激光诱导击穿光谱: 从实验平台到现场仪器[J]. 分析化学, 2017, 45(9): 1405-1414.

    Lin Q Y, Duan Y X. Laser-induced breakdown spectroscopy: from experimental platform to field instrument[J]. Chinese Journal of Analytical Chemistry, 2017, 45(9): 1405-1414.

[8] 李安, 王亮伟, 郭帅, 等. 激光诱导击穿光谱增强机制及技术研究进展[J]. 中国光学, 2017, 10(5): 619-640.

    Li A, Wang L W, Guo S, et al. Advances in signal enhancement mechanism and technology of laser induced breakdown spectroscopy[J]. Chinese Journal of Optics, 2017, 10(5): 619-640.

[9] 王金梅, 郑慧娟, 郑培超, 等. 正交再加热双脉冲激光诱导黄连等离子体的光谱特性[J]. 中国激光, 2018, 45(7): 0702006.

    Wang J M, Zheng H J, Zheng P C, et al. Spectral characteristics of coptis chinensis plasma induced by orthogonal re-heating double-pulse laser[J]. Chinese Journal of Lasers, 2018, 45(7): 0702006.

[10] 余洋, 赵南京, 方丽, 等. 单脉冲和再加热正交双脉冲激光诱导击穿光谱对比研究[J]. 光谱学与光谱分析, 2017, 37(2): 588-593.

    Yu Y, Zhao N J, Fang L, et al. Comparative study on laser induced breakdown spectroscopy based on single pulse and re-heating orthogonal dual pulse[J]. Spectroscopy and Spectral Analysis, 2017, 37(2): 588-593.

[11] Zhou W D, Li K X, Qian H G, et al. Effect of voltage and capacitance in nanosecond pulse discharge enhanced laser-induced breakdown spectroscopy[J]. Applied Optics, 2012, 51(7): B42-B48.

[12] 徐送宁, 姜冉, 宁日波, 等. 激光诱导熔穴对土壤等离子体辐射特性的影响[J]. 中国激光, 2015, 42(11): 1115001.

    Xu S N, Jiang R, Ning R B, et al. Effect of laser-induced crater on soil plasma radiation characteristics[J]. Chinese Journal of Lasers, 2015, 42(11): 1115005.

[13] 李丞, 高勋, 刘潞, 等. 磁场约束下激光诱导等离子体光谱强度演化研究[J]. 物理学报, 2014, 63(14): 145203.

    Li C, Gao X, Liu L, et al. Evolution of laser-induced plasma spectrum intensity under magnetic field confinement[J]. Acta Physica Sinica, 2014, 63(14): 145203.

[14] Iqbal A, Sun Z W, Wall M, et al. Sensitive elemental detection using microwave-assisted laser-induced breakdown imaging[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 136: 16-22.

[15] Lednev V N, Pershin S M, Sdvizhenskii P A, et al. Combining Raman and laser induced breakdown spectroscopy by double pulse lasing[J]. Analytical and Bioanalytical Chemistry, 2017, 410(1): 277-286.

[16] 陈添兵, 黄林, 姚明印, 等. 微波辅助激光诱导击穿光谱对大米元素分析的实验研究[J]. 光电子·激光, 2016, 27(2): 171-176.

    Chen T B, Huang L, Yao M Y, et al. Elemental analysis of rice using microwave assisted-laser induced breakdown spectroscopy[J]. Journal of Optoelectronics·Laser, 2016, 27(2): 171-176.

[17] Tampo M, Miyabe M, Akaoka K, et al. Enhancement of intensity in microwave-assisted laser-induced breakdown spectroscopy for remote analysis of nuclear fuel recycling[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(5): 886-892.

[18] Viljanen J, Sun Z W, Alwahabi Z T. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 118: 29-36.

[19] Chen S J, Iqbal A, Wall M, et al. Design and application of near-field applicators for efficient microwave-assisted laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(8): 1508-1518.

[20] 郭书海, 吴波, 张玲妍, 等. 农产品重金属超标风险:发生过程与预警防控[J]. 农业环境科学学报, 2018, 37(1): 1-8.

    Guo S H, Wu B, Zhang L Y, et al. Risk of heavy metal concentration in agricultural product exceeding the safe standard: occurrence process, forewarning and control[J]. Journal of Agro-Environment Science, 2018, 37(1): 1-8.

[21] 黎文兵. 叶菜中重金属元素的激光诱导击穿光谱检测及信号增强研究[D]. 南昌: 江西农业大学, 2015: 28-30.

    Li W B. Detecting heavy metals in leafy vegetables and method of signal enhancement based on laser induced breakdown spectroscopy[D]. Nanchang: Jiangxi Agriculture University, 2015: 28-30.

[22] 杨晖, 黄林, 刘木华, 等. 激光诱导击穿光谱检测青菜中镉元素的多变量筛选研究[J]. 分析化学, 2017, 45(2): 238-244.

    Yang H, Huang L, Liu M H, et al. Detection of Cd in Chinese cabbage by laser induced breakdown spectroscopy coupled with multivariable selection[J]. Chinese Journal of Analytical Chemistry, 2017, 45(2): 238-244.

[23] 王琦, 陈兴龙, 王静鸽, 等. 影响激光诱导等离子体稳定性的因素研究[J]. 光学学报, 2014, 34(6): 0630002.

    Wang Q, Chen X L, Wang J G, et al. Research on factors affecting the stability of laser-induced plasmas[J]. Acta Optica Sinica, 2014, 34(6): 0630002.

[24] 马月芬, 张庆明, 吴碧, 等. 超高速碰撞产生等离子体的电磁场测量方法[J]. 北京理工大学学报, 2011, 31(9): 1118-1121.

    Ma Y F, Zhang Q M, Wu B, et al. Measurement method of electromagnetic fields of plasma produced by hypervelocity impact[J]. Transactions of Beijing Institute of Technology, 2011, 31(9): 1118-1121.

许方豪, 刘木华, 陈添兵, 陈金印, 罗子奕, 何秀文, 周华茂, 林金龙, 姚明印. 微波探针对叶菜激光诱导击穿光谱信号增强效果的影响[J]. 激光与光电子学进展, 2018, 55(10): 103005. Xu Fanghao, Liu Muhua, Chen Tianbing, Chen Jinyin, Luo Ziyi, He Xiuwen, Zhou Huamao, Lin Jinlong, Yao Mingyin. Effect of Microwave Probes on Enhancement of Laser-Induced Breakdown Spectral Signal of Leaf Vegetable[J]. Laser & Optoelectronics Progress, 2018, 55(10): 103005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!