红外与激光工程, 2019, 48 (11): 1104005, 网络出版: 2019-12-09  

集成双热电致冷器超长线列InGaAs组件封装技术

Packaging for Long Linear InGaAs FPA with two thermoelectric coolings
徐勤飞 1,2,3,*刘大福 1,2徐琳 1,2张晶琳 1,2曾智江 1,2,3范崔 1,2,3李雪 1,2龚海梅 1,2
作者单位
1 中国科学院上海技术物理研究所 传感技术联合国家重点实验室, 上海 200083
2 中国科学院上海技术物理研究所 中国科学院红外成像材料与器件重点实验室, 上海 200083
3 中国科学院大学, 北京 100049
摘要
为了实现大视场、高空间分辨率、高光谱分辨率的指标要求, 通常采用多模块拼接的技术方案, 实现超长线列的组件。通过两个热电致冷器的拼接实现120 mm长度的大冷面, 通过多个模块拼接实现4 000元长线列InGaAs短波红外探测器组件的封装。同时针对超长线列温度均匀性实现、拼接焦平面的共面性、拼接的工程可靠性开展研究, 通过热电致冷器的拼接、热分析、冷板材料的选择、零件公差控制及微调节等技术手段, 在工程上实现了超大冷面的温度均匀性控制在±0.4 ℃以内; 焦平面的共面性控制在±0.020 mm以内。封装的超长线列InGaAs短波红外组件通过了冲击和随机振动实验, 实验前后焦平面的共面性无明显变化, 实现了清晰的地面成像。
Abstract
In order to realize large scale, high spatial resolution and high spectral resolution, mechanical assembly technology was usually adopted to realize Long Linear assembly. The large cold plate of 120 mm was achieved through the mechanical assembly technology of two thermoelectric coolings. Packaging of Long Linear InGaAs focal plane array assembly with 4 000 pixels was adoped through the mechanical assembly technology. Temperature uniformity distribution of the Long Linear, the coplanar error of FPAs, and the engineering reliability of the assembly were studied. The temperature uniformity was controlled at ±0.4℃, the focal plane array coplanar error was controlled inside ±0.020 mm by mechanical assembly of thermoelectronic coolings, thermal analysis, selection of coolings material, tolerance control of component and micro regulation etc. The Long Linear InGaAs focal plane array shortwave infrared assembly had passed the impact and random vibration test, the focal plane array coplanar error was nearly unchanged. At last, a clear ground-imaging in the camera was abtained.
参考文献

[1] Porod W, Ferry D K. Modification of the virtual-crystal approximation for ternary Ⅲ-Ⅴ compounds[J]. Phys Rev B, 1983, 27(4): 2587-2589.

[2] Gong Haimei, Tang Hengjing, Li Xue, et al. Near infrared InGaAs FPAs for space applications[J]. Infrared and Laser Engineering, 2009, 38(4):574-582.

[3] 唐恒敬. 台面型InGaAs短波红外线列探测器技术研究[D].上海: 中国科学院上海技术物理研究所, 2008.

    Tang Hengjing. Technical study on InGaAs linear SWIR focal plane arrays[D]. Shanghai: Shanghai Institute of Technical Physics, CAS, 2008. (in Chinese)

[4] 邵秀梅, 李淘, 邓洪海, 等. 平面型24元InGaAs短波红外探测器[J]. 红外技术, 2011, 33(9): 501-504.

    Shao Xiumei, Li Tao, Deng Honghai, et al. Planar-type 24×1 InGaAs short wave infrared detectors[J]. Infrared Technology, 2011, 33(9): 501-504. (in Chinese)

[5] 邵秀梅, 龚海梅, 李雪, 等. 高性能短波红外InGaAs焦平面探测器研究进展[J]. 红外技术, 2016, 38(8): 629-635.

    Shao Xiumei, Gong Haimei, Li Xue, et al. Developments of high performance short-wave infrared InGaAs focal plane detectors[J]. Infrared Technology, 2016, 38(8): 629-635. (in Chinese)

[6] Morio W, Haruo H. Wide wavalength and low dark current lattice-mismatched InGaAs/InAsP photodiodes grown by metalorganic vapor-phase epitaxy[J]. Appl Phys Lett, 1994, 64(10): 1265-1267.

[7] 郝国强, 张永刚, 顾溢, 等. In0.53Ga0.47As PIN光电探测器的温度特性分析[J]. 功能材料与器件学报, 2005, 11(2): 192-196.

    Hao Guoqiang, Zhang Yonggang, Gu Yi, et al. Temperature behavior of In0.53Ga0.47As PIN photodetectors[J]. Journal of Functional Materials and Devices, 2005, 11(2): 192-196. (in Chinese)

[8] Elsheikh M H, Shnawah D A, Sabri M F M, et al. A review on thermoelectric renewable energy: principle parameters that affect their performance[J]. Renewable & Sustainable Energy Reviews, 2014, 30(2): 337-355.

[9] 郭琛, 潘开林, 程浩. 热电制冷技术的研究进展[J]. 微纳电子技术, 2018, 55(12): 927-931.

    Guo Chen, Pan Kailin, Cheng Hao. Research progress of the thermoelectric refrigeration technology[J]. Micronanoelectronic Technolgy, 2018, 55(12): 927-931. (in Chinese)

[10] 周皓, 顾济华, 陈大庆. 数字全息多平面成像技术研究[J]. 红外与激光工程, 2015, 44(2): 513-518.

    Zhou Hao, Gu Jihua, Chen Daqing. Multi-plane imaging in digital holography[J]. Infrared and Laser Engineering, 2015, 44(2): 513-518. (in Chinese)

[11] 周世椿. 高级红外光电工程导论[M]. 北京: 科学出版社, 2014.

    Zhou Shichun. Introduction to Advanced Infrared Optoelectronic Engineering[M]. Beijing: Science Press, 2014. (in Chinese)

[12] 徐勤飞, 刘大福, 龚海梅, 等. 双波段芯片集成封装组件的低温光谱定量化[J]. 中国光学, 2017, 10(55): 744-751.

    Xu Qinfei, Liu Dafu, Gong Haimei, et al. The quantificational spectrum control for low temperature integrated dual-band assembly [J]. Chinese Journal of Optics, 2017, 10(55): 744-751. (in Chinese)

[13] D Pitts, L Sissom. 传热学[M]. 第二版. 葛新石, 叶宏, 陈则韶, 译. 北京: 科学出版社, 2002.

    Pitts D, Sissom L. Heat Transfer[M]. 2nd ed. Translated by Ge Xinshi, Ye Hong, Chen Zeshao. Beijing: Science Press, 2002. (in Chinese)

[14] 李光正, 马洪林. 封闭腔内高瑞利数层流自然对流数值模拟[J]. 华中科技大学学报(城市科学版), 2004, 21(3): 14-17.

    Li Guangzheng, Ma Honglin. The numerical simulation of natural convection in a closed cavity[J]. Journal of HUST (Urban Science Edition), 2004, 21(3): 14-17. (in Chinese)

[15] 李世武, 熊莉芳. 封闭方腔自然对流换热的研究[J]. 工业加热, 2007, 36(3): 10-13.

    Li Shiwu, Xiong Lifang. Study of natural convection in closed a square cavity[J]. Industrial Heating, 2007, 36(3): 10-13. (in Chinese)

[16] 黄春勇, 王厚华. 中空玻璃空气夹层内的自然对流换热[J]. 重庆大学学报(自然科学版), 2009, 32(7): 809-814.

    Huang Chunyong, Wang Houhua. Natural convection heat transfer in the air-layer of insulating glass[J]. Journal of Chongqing University(Natural Science Edition), 2009, 32(7): 809-814. (in Chinese)

徐勤飞, 刘大福, 徐琳, 张晶琳, 曾智江, 范崔, 李雪, 龚海梅. 集成双热电致冷器超长线列InGaAs组件封装技术[J]. 红外与激光工程, 2019, 48(11): 1104005. Xu Qinfei, Liu Dafu, Xu Lin, Zhang Jinglin, Zeng Zhijiang, Fan Cui, Li Xue, Gong Haimei. Packaging for Long Linear InGaAs FPA with two thermoelectric coolings[J]. Infrared and Laser Engineering, 2019, 48(11): 1104005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!