激光与光电子学进展, 2020, 57 (5): 050004, 网络出版: 2020-03-05   

光纤时频同步技术的研究进展 下载: 1792次

Research Progress on Optical Fiber Time-Frequency Synchronization Technology
作者单位
中国人民解放军海军工程大学电气工程学院, 湖北 武汉 430033
引用该论文

梁益丰, 许江宁, 吴苗, 何泓洋, 江鹏飞. 光纤时频同步技术的研究进展[J]. 激光与光电子学进展, 2020, 57(5): 050004.

Yifeng Liang, Jiangning Xu, Miao Wu, Hongyang He, Pengfei Jiang. Research Progress on Optical Fiber Time-Frequency Synchronization Technology[J]. Laser & Optoelectronics Progress, 2020, 57(5): 050004.

参考文献

[1] Uzan J P. The fundamental constants and their variation: observational and theoretical status[J]. Reviews of Modern Physics, 2003, 75(2): 403-455.

[2] 刘杰. 光纤光学频率传递研究[D]. 北京: 中国科学院大学, 2016: 5.

    LiuJ. Experimental study on optical frequency transfer via optical fibers[D]. Beijing: University of Chinese Academy of Sciences, 2016: 5.

[3] 白钰. 光纤时频网络化精密同步及航天测量应用[D]. 北京: 清华大学, 2015: 16.

    BaiY. Fiber-based time and frequency synchronization network and aerospace measurement application[D]. Beijing: Tsinghua University, 2015: 16.

[4] 苗菁. 自由空间时间频率同步[D]. 北京: 清华大学, 2015: 4.

    MiaoJ. Time and frequency synchronization in free space[D]. Beijing: Tsinghua University, 2015: 4.

[5] 杨元喜. 综合PNT体系及其关键技术[J]. 测绘学报, 2016, 45(5): 505-510.

    Yang Y X. Concepts of comprehensive PNT and related key technologies[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45(5): 505-510.

[6] 刘春保. GPS受限条件下的PNT服务[J]. 卫星应用, 2013( 4): 44- 49.

    Liu CB. PNT service under GPS constraints[J]. Satellite Application, 2013( 4): 44- 49.

[7] 葛悦涛, 薛连莉, 李婕敏. 美国空军授时战概念分析[J]. 飞航导弹, 2018( 5): 11- 14.

    Ge YT, Xue LL, Li JM. Conceptual analysis of time warfare in the US Air Force[J]. Aerodynamic Missile Journal, 2018( 5): 11- 14.

[8] 朱玺. 光纤时间频率同步网络技术及应用[D]. 北京: 清华大学, 2016: 2.

    ZhuX. Fiber-based time and frequency synchronization network and application[D]. Beijing: Tsinghua University, 2016: 2.

[9] 袁一博. 光纤网络时间频率传输与同步技术研究[D]. 北京: 清华大学, 2017: 34.

    Yuan YB. The research on fiber-based time and frequency dissemination and synchronization technique[D]. Beijing: Tsinghua University, 2017: 34.

[10] 何婷, 陈国军, 马嘉琳. 精密时频传递技术综述[J]. 测绘通报, 2018( 5): 1- 5.

    HeT, Chen GJ, Ma JL. Overview of precise time and frequency transfer technology[J]. Bulletin of Surveying and Mapping, 2018( 5): 1- 5.

[11] 李孝辉, 窦忠, 赵晓辉. 北京时间:长短波授时系统[M]. 杭州: 浙江教育出版社, 2016: 98.

    Li XH, DouZ, Zhao XH. Beijing time: BPL and BPM national time service systems[M]. Zhejiang: Zhejiang Education Publishing House, 2016: 98.

[12] 张道农, 于跃海. 电力系统时间同步技术[M]. 北京: 中国电力出版社, 2017: 56.

    Zhang DN, Yu YH. Time synchronization technology of power system[M]. Beijing: China Electric Power Press, 2017: 56.

[13] 吴钟乐. 稳定频率源与时频传输技术研究[D]. 北京: 北京邮电大学, 2015: 11.

    Wu ZL. Research on stable frequency source and time & frequency transfer technology[D]. Beijing: Beijing University of Posts and Telecommunications, 2015: 11.

[14] 葛红舞, 张宇新, 马涛. 利用光纤传递高精度时间的研究[J]. 电力系统通信, 2011, 32(10): 30-33.

    Ge H W, Zhang Y X, Ma T. Performance evaluation of two-way pulse time transmission over optical fiber networks[J]. Telecommunications for Electric Power System, 2011, 32(10): 30-33.

[15] Ye J, Peng J L, Jones R J, et al. Delivery of high-stability optical and microwave frequency standards over an optical fiber network[J]. Journal of the Optical Society of America B, 2003, 20(7): 1459-1467.

[16] Holman K W, Jones D J, Hudson D D, et al. Precise frequency transfer through a fiber network by use of 15-μm mode-locked sources[J]. Optics Letters, 2004, 29(13): 1554-1556.

[17] Peik E, Sterr U. The development of accurate optical clocks[J]. PTB-Mitteilungen/Special Issue, 2009, 119(2): 25-32.

[18] Predehl K, Grosche G. Raupach S M F, et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 2012, 336(6080): 441-444.

[19] Foreman S M, Holman K W, Hudson D D, et al. Remote transfer of ultrastable frequency references via fiber networks[J]. Review of Scientific Instruments, 2007, 78(2): 021101.

[20] 梁双有, 任燕. 利用光纤进行高精度时间传递[J]. 宇航计测技术, 2004, 24(3): 24-26.

    Liang S Y, Ren Y. High precision time can be transmitted via optical fiber[J]. Journal of Astronautic Metrology and Measurement, 2004, 24(3): 24-26.

[21] Zhang L M, Chang L, Dong Y, et al. Phase drift cancellation of remote radio frequency transfer using an optoelectronic delay-locked loop[J]. Optics Letters, 2011, 36(6): 873-875.

[22] Ning B, Du P, Hou D, et al. Phase fluctuation compensation for long-term transfer of stable radio frequency over fiber link[J]. Optics Express, 2012, 20(27): 28447-28454.

[23] 李忠文, 李琦, 孟志才. 主从同步“松耦合”锁相技术[J]. 电子学报, 2013, 41(11): 2302-2306.

    Li Z W, Li Q, Meng Z C. “Loose Coupling” phase lock technique for master-slave synchronization[J]. Acta Electronica Sinica, 2013, 41(11): 2302-2306.

[24] 吴燕. 采用双向对比法的光纤时间传递系统[D]. 西安: 西安理工大学, 2014: 11- 13.

    WuY. Time transmission system of using be-contrast methods in optical fiber[D]. Xi’an: Xi’an University of Technology, 2014: 11- 13.

[25] Kihara M, Imaoka A, Imae M, et al. Two-way time transfer through 2.4 Gb/s optical SDH system[J]. IEEE Transactions on Instrumentation and Measurement, 2001, 50(3): 709-715.

[26] Ebenhag S C, Hedekvist P O, Jarlemark P, et al. Measurements and error sources in time transfer using asynchronous fiber network[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(7): 1918-1924.

[27] 丁玮. 光纤网络中时间信息的传递技术[D]. 南京: 南京理工大学, 2010: 17.

    DingW. Time information transmission over optical fiber communication network[D]. Nangjing: Nanjing University of Science and Technology, 2010: 17.

[28] 张大元, 谢毅, 孟艾立, 等. 利用光纤数字同步传送网2.048 Mbit/s支路传送高精度标准时间信号[J]. 现代电信科技, 2006, 36(12): 17-20, 25.

    Zhang D Y, Xie Y, Meng A L, et al. Transferring high accuracy standard time signal by SDH 2.048 Mbit/s branch[J]. Modern Science & Technology of Telecommunications, 2006, 36(12): 17-20, 25.

[29] PiesterD, FujiedaM, RostM, et al. ( TTTOF) : first results of calibrated clock comparisons[EB/OL]. ( 2010-01-29). https:∥arxiv.gg363.site/abs/1001. 5406.

[30] Rost M, Piester D, Yang W, et al. Time transfer through optical fibres over a distance of 73 km with an uncertainty below 100 ps[J]. Metrologia, 2012, 49(6): 772-778.

[31] Lopez O, Kanj A, Pottie P E, et al. Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network[J]. Applied Physics B, 2013, 110(1): 3-6.

[32] Wu G L, Hu L, Zhang H, et al. High-precision two-way optic-fiber time transfer using an improved time code[J]. Review of Scientific Instruments, 2014, 85(11): 114701.

[33] Kaplan ED, Hegarty CJ. Understanding GPS: principles and applications[M]. 2nd ed. Boston: Artech House, 2006.

[34] 杨文可. 高精度站间双向时间频率传递关键技术研究[D]. 长沙: 国防科学技术大学, 2014: 18.

    Yang WK. Research on key technologies of high precision inter-station two-way time and frequency transfer[D]. Changsha: National University of Defense Technology, 2014: 18.

[35] 丁小玉, 张宝富, 卢麟, 等. 高精度时间信号的光纤传递[J]. 激光与光电子学进展, 2010, 47(11): 110601.

    Ding X Y, Zhang B F, Lu L, et al. High precision time transfer with optical fiber[J]. Laser & Optoelectronics Progress, 2010, 47(11): 110601.

[36] 李晓亚, 朱勇, 卢麟, 等. 高精度光纤时频伺服传递实验研究[J]. 光学学报, 2014, 34(5): 0506004.

    Li X Y, Zhu Y, Lu L, et al. Study on high precision disciplined time-frequency transferring experiments through optical fiber link[J]. Acta Optica Sinica, 2014, 34(5): 0506004.

[37] Lopez O, Amy-Klein A, Lours M, et al. High-resolution microwave frequency dissemination on an 86-km urban optical link[J]. Applied Physics B, 2010, 98(4): 723-727.

[38] Lopez O, Daussy C, Chardonnet C, et al. Frequency dissemination with a 86-km optical fibre for fundamental tests of physics[J]. Annales de Physique, 2007, 32(2/3): 187-189.

[39] Lopez O, Amy-Klein A, Daussy C, et al. 86-km optical link with a resolution of 2×10 -18 for RF frequency transfer[J]. The European Physical Journal D, 2008, 48(1): 35-41.

[40] LopezO, ChanteauB, RoncinV, et al. Multiplexed optical link for ultra-stable frequency dissemination[C]∥2010 IEEE International Frequency Control Symposium, June 1-4, 2010, Newport Beach, CA, USA. New York: IEEE, 2010: 639- 641.

[41] Lopez O, Kanj A, Pottie P E, et al. Simultaneous remote transfer of accurate timing and optical frequency over a public fiber network[J]. Applied Physics B, 2013, 110(1): 3-6.

[42] Jung K, Shin J, Kang J, et al. Frequency comb-based microwave transfer over fiber with 7×10 -19 instability using fiber-loop optical-microwave phase detectors[J]. Optics Letters, 2014, 39(6): 1577-1580.

[43] Zhao J Y, Li D W, Ning B, et al. Highly-stable frequency transfer via fiber link with improved electrical error signal extraction and compensation scheme[J]. Optics Express, 2015, 23(7): 8829-8836.

[44] 黄睿. 基于被动相位噪声补偿的光纤频率传递技术研究[D]. 上海: 上海交通大学, 2016: 3- 5.

    HuangR. Study on fiber-optic frequency transfer based on passive phase noise compensation[D]. Shanghai: Shanghai Jiao Tong University, 2016: 3- 5.

[45] Ma L S, Jungner P, Ye J, et al. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path[J]. Optics Letters, 1994, 19(21): 1777-1779.

[46] 曹群. 基于光纤的光学频率比对与传递研究[D]. 北京: 中国科学院大学, 2017: 46.

    CaoQ. The study on optical frequency comparison and transfer via optical fibers[D]. Beijing: University of Chinese Academy of Sciences, 2017: 46.

[47] Predehl K, Grosche G. Raupach S M F, et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place[J]. Science, 2012, 336(6080): 441-444.

[48] Schediwy S W, Gozzard D. Baldwin K G H, et al. High-precision optical-frequency dissemination on branching optical-fiber networks[J]. Optics Letters, 2013, 38(15): 2893-2896.

[49] 刘杰, 高静, 许冠军, 等. 基于光纤的光学频率传递研究[J]. 物理学报, 2015, 64(12): 120602.

    Liu J, Gao J, Xu G J, et al. Study of optical frequency transfer via fiber[J]. Acta Physica Sinica, 2015, 64(12): 120602.

[50] 林贵斌. 光学频率梳生成及其在WDM系统中应用研究[D]. 西安: 西安电子科技大学, 2014: 18.

    Lin GB. Research on optical frequency comb generation and application in WDM system[D]. Xi'an:Xidian University, 2014: 18.

[51] 梁梓豪, 高社成, 冯元华, 等. 基于相干检测数字光频梳的快速BOTDA传感系统[J]. 激光与光电子学进展, 2018, 55(11): 110602.

    Liang Z H, Gao S C, Feng Y H, et al. Fast BOTDA sensing system based on coherent detecting digital optical frequency comb[J]. Laser & Optoelectronics Progress, 2018, 55(11): 110602.

[52] 路桥, 时雷, 毛庆和. 双光梳光谱技术研究进展[J]. 中国激光, 2018, 45(4): 0400001.

    Lu Q, Shi L, Mao Q H. Research advances in dual-comb spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(4): 0400001.

[53] 杨力, 沈旭玲, 杨康文, 等. 自适应双光梳光谱原理分析与实现[J]. 光学学报, 2018, 38(5): 0514002.

    Yang L, Shen X L, Yang K W, et al. Analysis and realization of adaptive dual-comb spectroscopy[J]. Acta Optica Sinica, 2018, 38(5): 0514002.

[54] 何明芳, 陈开鑫, 胡哲峰. 热效应作用下的微环克尔光频梳[J]. 激光与光电子学进展, 2018, 55(9): 091901.

    He M F, Chen K X, Hu Z F. Kerr optical frequency comb based on micro-ring resonator with thermal effect[J]. Laser & Optoelectronics Progress, 2018, 55(9): 091901.

[55] 程楠, 陈炜, 刘琴, 等. 光纤时间频率同时传递系统中时间同步方法的研究[J]. 中国激光, 2015, 42(7): 0705002.

    Cheng N, Chen W, Liu Q, et al. Time synchronization technique for joint time and frequency transfer via optical fiber[J]. Chinese Journal of Lasers, 2015, 42(7): 0705002.

[56] Krehlik P, Czubla A, et al. Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km[J]. Metrologia, 2013, 50(2): 133-145.

[57] Wang B, Gao C, Chen W L, et al. Precise and continuous time and frequency synchronisation at the 5×10 -19 accuracy level[J]. Scientific Reports, 2012, 2: 556-560.

[58] Yin F F, Wu Z L, Dai Y T, et al. Stable fiber-optic time transfer by active radio frequency phase locking[J]. Optics Letters, 2014, 39(10): 3054-3057.

[59] 王灵东, 吴龟灵, 沈建国, 等. 基于100 km光纤链路的时间和频率同时传递[J]. 光学学报, 2015, 35(4): 0705002.

    Wang L D, Wu G L, Shen J G, et al. Simultaneous transfer of time and frequency over 100 km fiber link[J]. Acta Optica Sinica, 2015, 35(4): 0705002.

[60] 白居宪. 低噪声频率合成[M]. 西安: 西安交通大学出版社, 1995: 5.

    Bai JX. Low noise frequency synthesis[M]. Xi'an: Xi'an Jiaotong University Press, 1995: 5.

[61] 赵文宇. 高精度频率综合与传递关键技术[D]. 北京: 中国科学院大学, 2015: 15.

    Zhao WY. Key technique of the high-accuracy synthesizer and frequency transmit[D]. Beijing: University of Chinese Academy of Sciences, 2015: 15.

[62] 赵晓宇, 卢麟, 吴传信, 等. 基于光纤环形网的多点高精度时频传递方法[J]. 光学学报, 2019, 39(6): 0606002.

    Zhao X Y, Lu L, Wu C X, et al. Ring fiber network based multipoint time-frequency dissemination method with high precision[J]. Acta Optica Sinica, 2019, 39(6): 0606002.

[63] Zhu X, Wang B, Guo Y C, et al. Robust fiber-based frequency synchronization system immune to strong temperature fluctuation[J]. Chinese Optics Letters, 2018, 16(1): 010605.

[64] Zhu X, Wang B, Gao C, et al. Fiber-based multiple-access frequency synchronization via 1f-2f dissemination[J]. Chinese Physics B, 2016, 25(9): 090601.

[65] 龚光华, 李鸿明. 基于光纤以太网的高精度分布式授时技术[J]. 导航定位与授时, 2017, 4(6): 68-74.

    Gong G H, Li H M. High-precision time distribution based on optical ethernet[J]. Navigation Positioning and Timing, 2017, 4(6): 68-74.

[66] 熊晓锋, 杨飞, 桂有珍, 等. 光纤通信网中波长选择开关的时频传递性能[J]. 中国激光, 2018, 45(1): 0106003.

    Xiong X F, Yang F, Gui Y Z, et al. Time-frequency transfer performance of wavelength selection switch in optical fiber communication network[J]. Chinese Journal of Lasers, 2018, 45(1): 0106003.

[67] Chiodo N, Quintin N, Stefani F, et al. Cascaded optical fiber link using the internet network for remote clocks comparison[J]. Optics Express, 2015, 23(26): 33927-33937.

[68] Droste S, Ozimek F, Udem T, et al. Optical-frequency transfer over a single-span 1840 km fiber link[J]. Physical Review Letters, 2013, 111(11): 110801.

[69] 华宇, 郭伟, 燕保荣, 等. 我国授时服务体系发展现状分析[J]. 时间频率学报, 2016, 39(3): 193-201.

    Hua Y, Guo W, Yan B R, et al. Developing status of national time service architecture[J]. Journal of Time and Frequency, 2016, 39(3): 193-201.

梁益丰, 许江宁, 吴苗, 何泓洋, 江鹏飞. 光纤时频同步技术的研究进展[J]. 激光与光电子学进展, 2020, 57(5): 050004. Yifeng Liang, Jiangning Xu, Miao Wu, Hongyang He, Pengfei Jiang. Research Progress on Optical Fiber Time-Frequency Synchronization Technology[J]. Laser & Optoelectronics Progress, 2020, 57(5): 050004.

本文已被 12 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!