红外与激光工程, 2018, 47 (8): 0806003, 网络出版: 2018-08-29   

基于激光诱导击穿光谱技术的生铁中硅锰钛偏析的同步分析

Simultaneous analysis of Si, Mn and Ti segregation in pig iron by laser-induced breakdown spectroscopy
作者单位
1 北京科技大学 冶金与生态工程学院, 北京 100083
2 华中科技大学 武汉光电国家实验室 激光与太赫兹技术功能实验室, 湖北 武汉 430074
摘要
到目前为止, 尚没有适用于大型金属材料试样元素偏析定量检测的有效方法。该研究将新兴的激光诱导击穿光谱(LIBS)技术应用于生铁中Si、Mn、Ti元素偏析的同步检测, 选取Si (288.16 nm)、 Mn (293.31 nm) 和Ti (334.94 nm)作为三种元素的定量分析谱线, 同时选取Fe (263.58 nm, 441.51 nm, 370.79 nm)分别作为三种元素的内标谱线, 使用内标法降低基体效应的影响。定标拟合系数R2分别为0.991 7、0.990 3和0.991 2, 因此证明LIBS适用于对生铁中Si、Mn、Ti元素的准确同步定量检测。随后将取自高炉的铁样切割为两个圆形的铁块, 用空间分辨的LIBS装置对样品表面进行面扫描分析并得出元素分布图, 基于元素分布图识别出Si、Mn、Ti元素的偏析区域并计算最大正偏析度和负偏析度。该研究证明了LIBS用于同步检测生铁中Si、Mn、Ti元素偏析的可行性, 同时也揭示了生铁中合金元素的偏析规律, 有利于加深对凝固过程元素迁移和分布的理解和认识。
Abstract
There has been no effective method for detecting the element segregation of large metallic material samples so far. In this research, the newly emerging laser-induced breakdown spectroscopy (LIBS) was applied to quantitatively analyze the segregation of Si, Mn and Ti in pig iron simultaneously. The spectra lines of Si (288.16 nm), Mn (293.31 nm) and Ti (334.94 nm) were selected as the quantitative analysis spectral lines, while lines of Fe (263.58 nm, 441.51 nm, 370.79 nm) were chosen as the internal calibration lines to reduce the influence of matrix effect. The fitting correlation coefficients (R2) were 0.991 7, 0.990 3, 0.991 2, respectively, which proved the ability of LIBS in measuring the concentration of Si, Mn and Ti correctly and simultaneously. A pig iron sample from blast furnace was cut into two round iron samples, whose surface were analyzed with the help of spatial-resolved LIBS subsequently. The element maps revealed the segregation locations of Si, Mn and Ti. The maximum positive and negative segregation degree of three alloy elements was also calculated based on the analysis results of LIBS. The work in this study demonstrates the capability of LIBS for detecting the segregation of alloy elements in pig iron simultaneously. It also reveals the segregation law of alloy elements in pig iron, which is meaningful for the understanding of alloy elements transfer and distribution during solidification process.
参考文献

[1] Choudhary S K, Ganguly S. Morphology and segregation in continuously cast high carbon steel billets[J]. ISIJ International, 2007, 47(12): 1759-1766.

[2] Kajatani T, Drezet J M, Rappaz M. Numerical simulation of deformation-induced segregation in continuous casting of steel[J]. Metallurgical and Materials Transactions A, 2001, 32(6): 1479-1491.

[3] Ludlow V, Normanton A, Anderson A, et al. Strategy to minimise central segregation in high carbon steel grades during billet casting[J]. Ironmaking & Steelmaking, 2005, 32(1): 68-74.

[4] Hou Guanyu, Wang Ping, Tong Cunzhu. Progress in laser-induced breakdown spectroscopy and its applications[J]. Chinese Optics, 2013, 6(4): 490-500. (in Chinese)

[5] Li Zhanfeng, Wang Ruiwen, Deng Hu, et al. Laser induced breakdown spectroscopy of Pb in Coptis chinensis[J]. Infrared and Laser Engineering, 2016, 45(10): 1006003. (in Chinese)

[6] Yuan Di, Gao Xun, Yao Shuang, et al. The detection of heacy metals in soil with laser induced breakdown spectroscopy [J]. Spectroscopy and Spectral Analysis, 2016, 36(8): 2617-2620. (in Chinese)

[7] Dell′Aglio M, Gaudiuso R, Senesi G S, et al. Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS)[J]. Journal of Environmental Monitoring, 2011, 13(5): 1422-1426.

[8] Li Wenhong, Shang Liping, Wu Zhixiang, et al. Determination of Al and Fe in cement by laser-induced breakdown spectroscopy [J]. Infrared and Laser Engineering, 2015, 44(2): 508-512. (in Chinese)

[9] Mohamed W T Y. Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera[J]. Optics & Laser Technology, 2008, 40(1): 30-38.

[10] Liu Li, Xiao Pingping. Accuracy improvement of temperature calculation of the laser-induced plasma using wavelet transform baseline subtraction [J]. Spectroscopy and Spectral Analysis, 2016, 36(2): 545-549. (in Chinese)

[11] Hao Z Q, Li C M, Shen M, et al. Acidity measurement of iron ore powders using laser-induced breakdown spectroscopy with partial least squares regression[J]. Optics Express, 2015, 23(6): 7795-7801.

[12] Rai N K, Rai A K. LIBS—an efficient approach for the determination of Cr in industrial wastewater[J]. Journal of Hazardous Materials, 2008, 150(3): 835-838.

[13] Li X, Yin H, Wang Z, et al. Quantitative carbon analysis in coal by combining data processing and spatial confinement in laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2015, 111: 102-107.

[14] Chen Shihe, Lu Jidong, Zhang Bo, et al. Controllable factors in detection of pulverized coal flow with LIBS[J]. Optics and Precision Engineering, 2013, 21(7): 1651-1658. (in Chinese)

[15] Emde Benjamin, Hermsdorf J 觟rg, Kaierle Stefan. Identification of the zinc dispersion in rubber blends by libs with a Nd:YAG laser[J]. Chinese Optics, 2015, 8(4): 596-602.

[16] Boué-Bigne F. Laser-induced breakdown spectroscopy applications in the steel industry: Rapid analysis of segregation and decarburization [J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(10): 1122-1129.

[17] Boué-Bigne F. Simultaneous characterization of elemental segregation and cementite networks in high carbon steel products by spatially-resolved laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 96: 21-32.

[18] Zhang Yong, Jia Yunhai, Chen Jiwen, et al. Segregation bands analysis of steel sample using laser-induced breakdown spectroscopy [J]. Spectroscopy and Spectral Analysis, 2013, 33(12): 3383-3387. (in Chinese)

梅亚光, 程宇心, 程树森, 郝中骐, 郭连波, 李祥友, 曾晓雁. 基于激光诱导击穿光谱技术的生铁中硅锰钛偏析的同步分析[J]. 红外与激光工程, 2018, 47(8): 0806003. Mei Yaguang, Cheng Yuxin, Cheng Shusen, Hao Zhongqi, Guo Lianbo, Li Xiangyou, Zeng Xiaoyan. Simultaneous analysis of Si, Mn and Ti segregation in pig iron by laser-induced breakdown spectroscopy[J]. Infrared and Laser Engineering, 2018, 47(8): 0806003.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!