发光学报, 2019, 40 (6): 691, 网络出版: 2019-09-03   

发光碳纳米点的带隙调控及应用

Luminescent Carbon Dots:Bandgap Modulation and Applications
张博涵 1,2,*田震 1,2李迪 1周鼎 1鲍鑫 1,2周正杰 1,2曲松楠 1,3
作者单位
1 中国科学院长春光学精密机械与物理研究所 发光学及应用国家重点实验室, 吉林 长春 130033
2 中国科学院大学, 北京 100049
3 澳门大学 应用物理与材料工程研究所, 中国 澳门 999078
摘要
碳点作为一种新型的碳基荧光纳米粒子由于其可调谐发光、高光稳定性、生物相容性和低成本等独特优势而引起了很多关注。在过去的十几年中, 碳点的制备和应用取得了巨大进展。然而, 由于前体和合成方法的多样性, 碳点的光致发光机理具有很大争议。现在人们普遍认为, 碳点的光致发光源于电子在带隙的跃迁, 并将荧光起源分别归结为碳核跃迁(π-π*)、表面态跃迁(n-π*)以及分子荧光团等。本文总结了碳点发光起源的几种可能和机制, 分别讨论了通过调控碳点粒径以及进行表面工程处理的方法来实现碳纳米点带隙可调控的高效发光。介绍了通过表面工程、元素掺杂等手段提升碳纳米点光致发光量子产率及其在光电器件、信息存储、生物成像、光热治疗以及光动力治疗中的应用。
Abstract
Carbon dots(CDots) as a novel carbon-based fluorescent nanoparticles have attracted a lot of attention due to their distinctive advantages such as tunable emission, high photostability, biocompatibility, and low cost. In the past decade, preparation and application of CDots have been made great progress. However, the accurate photoluminescence(PL) mechanisms of CDots are controversial due to the diversity of the precursor and the synthetic method. Now it is generally accepted that the optical properties of CDots originate from core state(π-π*), surface edge state(n-π*), molecular fluorophores or their combination. We will discuss them successively in the following part. In this review, firstly we summarize the photoluminescence origins of CDots, then discuss the methods to modulate the bandgap by particle size modification and surface structure engineering respectively. This is followed by introduction of the enhancement of PLQY. The most effective applications of CDots in optoelectronic devices, information storage, bioimaging and cancer treatment are also mentioned. This review concludes with an outlook on the development and application prospects of CDots.
参考文献

[1] LI Y B,BAI G X,ZENG S J,et al.. Theranostic carbon dots with innovative NIR-Ⅱ emission for in vivo renal-excreted optical imaging and photothermal therapy [J]. ACS Appl. Mater. Interfaces, 2019,11(5):4737-4744.

[2] 于淑娟,陈宽,汪丰,等. 壳聚糖基聚合物碳点荧光材料合成及其自组装载药应用 [J]. 中国光学, 2018,11(3):420-430.

    YU S J,CHEN K,WANG F,et al.. Synthesis of chitosan-based polymer carbon dots fluorescent materials and application of self-assembled drug-loading [J]. Chin. Opt., 2018,11(3):420-430. (in Chinese)

[3] LIU S,TIAN J Q,WANG L,et al.. Hydrothermal treatment of grass:a low-cost,green route to nitrogen-doped,carbon-rich,photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(Ⅱ) ions [J]. Adv. Mater., 2012,24(15):2037-2041.

[4] SALINAS-CASTILLO A,ARIZA-AVIDAD M,PRITZ C,et al.. Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources [J]. Chem. Commun., 2013,49(11):1103-1105.

[5] DE B,VOIT B,KARAK N. Carbon dot reduced Cu2O nanohybrid/hyperbranched epoxy nanocomposite:mechanical,thermal and photocatalytic activity [J]. RSC Adv., 2014,4(102):58453-58459.

[6] LI F,TIAN F,LIU C J,et al.. One-step synthesis of nanohybrid carbon dots and TiO2 composites with enhanced ultraviolet light active photocatalysis [J]. RSC Adv., 2015,5(11):8389-8396.

[7] LI H T,LIU R H,LIU Y,et al.. Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior [J]. J. Mater. Chem., 2012,22(34):17470-17475.

[8] LI H P,ZHU Y H,CAO H M,et al.. Preparation and characterization of photocatalytic carbon dots-sensitized electrospun titania nanostructured fibers [J]. Mater. Res. Bull., 2013,48(2):232-237.

[9] XU X Y,RAY R,GU Y L,et al.. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J]. J. Am. Chem. Soc., 2004,126(40):12736-12737.

[10] SUN Y P,ZHOU B,LIN Y,et al.. Quantum-sized carbon dots for bright and colorful photoluminescence [J]. J. Am. Chem. Soc., 2006,128(24):7756-7757.

[11] HU S L,NIU K Y,SUN J,et al.. One-step synthesis of fluorescent carbon nanoparticles by laser irradiation [J]. J. Am. Chem. Soc., 2009,19(4):484-490.

[12] LI X Y,WANG H Q,SHIMIZU Y,et al.. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents [J]. Chem. Commun., 2011,47(3):932-934.

[13] LI Y,HU Y,ZHAO Y,et al.. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics [J]. Adv. Mater., 2011,23(6):776-780.

[14] LONG Y M,ZHOU C H,ZHANG Z L,et al.. Shifting and non-shifting fluorescence emitted by carbon nanodots [J]. J. Mater. Chem., 2012,22(13):5917-5920.

[15] MING H,MA Z,LIU Y,et al.. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property [J]. Dalton Trans., 2012,41(31):9526-9531.

[16] ZHAO Q L,ZHANG Z L,HUANG B H,et al.. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite [J]. Chem. Commun., 2008,41:5116-5118.

[17] HAN B F,WANG W X,WU H Y,et al.. Polyethyleneimine modified fluorescent carbon dots and their application in cell labeling [J]. Colloids Surf. B Biointerfaces, 2012,100:209-214.

[18] HOU J,ZHANG F S,YAN X,et al.. Sensitive detection of biothiols and histidine based on the recovered fluorescence of the carbon quantum dots-Hg(Ⅱ) system [J]. Anal. Chim. Acta, 2015,859:72-78.

[19] LIU C J,ZHANG P,TIAN F,et al.. One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging [J]. J. Mater. Chem., 2011,21(35):13163-13167.

[20] ZHU H,WANG X L,LI Y L,et al.. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties [J]. Chem. Commun., 2009,34:5118-5120.

[21] LIU H F,LI Z H,SUN Y Q,et al.. Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability [J]. Sci. Rep., 2018,8:1086-1-8.

[22] JING P T,HAN D,LI D,et al.. Surface related intrinsic luminescence from carbon nanodots:solvent dependent piezochromism [J]. Nanoscale Horiz., 2019,4(1):175-181.

[23] CHIEN C T,LI S S,LAI W J,et al.. Tunable photoluminescence from graphene oxide [J]. Angew. Chem. Int. Ed. Engl., 2012,51(27):6662-6666.

[24] YEH T F,HUANG W L,CHUNG C J,et al.. Elucidating quantum confinement in graphene oxide dots based on excitation-wavelength-independent photoluminescence [J]. J. Phys. Chem. Lett., 2016,7(11):2087-2092.

[25] BAO L,LIU C,ZHANG Z L,et al.. Photoluminescence-tunable carbon nanodots:surface-state energy-gap tuning [J]. Adv. Mater., 2015,27(10):1663-1667.

[26] XIONG Y,SCHNEIDER J,RECKMEIER C J,et al.. Carbonization conditions influence the emission characteristics and the stability against photobleaching of nitrogen doped carbon dots [J]. Nanoscale, 2017,9(32):11730-11738.

[27] EHRAT F,BHATTACHARYYA S,SCHNEIDER J,et al.. Tracking the source of carbon dot photoluminescence:aromatic domains versus molecular fluorophores [J]. Nano Lett., 2017,17(12):7710-7716.

[28] YU P,WEN X M,TOH Y R,et al.. Temperature-dependent fluorescence in carbon dots [J]. J. Phys. Chem. C, 2012,116(48):25552-25557.

[29] RECKMEIER C J,WANG Y,ZBORIL R,et al.. Influence of doping and temperature on solvatochromic shifts in optical spectra of carbon dots [J]. J. Phys. Chem. C, 2016,120(19):10591-10604.

[30] SK M A,ANANTHANARAYANAN A,HUANG L,et al.. Revealing the tunable photoluminescence properties of graphene quantum dots [J]. J. Mater. Chem. C, 2014,2(34):6954-6960.

[31] QU D,ZHENG M,LI J,et al.. Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications [J]. Light:Sci. Appl., 2015,4:e364-1-8.

[32] TIAN Z,ZHANG X T,LI D,et al.. Full-color inorganic carbon dot phosphors for white-light-emitting diodes [J]. Adv. Opt. Mater., 2017,5(19):1700416-1-9.

[33] MIAO X,QU D,YANG D X,et al.. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization [J]. Adv. Mater., 2018,30(1):1704740-1-8.

[34] LI H T,HE X D,KANG Z H,et al.. Water-soluble fluorescent carbon quantum dots and photocatalyst design [J]. Angew. Chem. Int. Ed. Engl., 2010,49(26):4430-4434.

[35] JIANG K,SUN S,ZHANG L,et al.. Red,green,and blue luminescence by carbon dots:full-color emission tuning and multicolor cellular imaging [J]. Angew. Chem. Int. Ed. Engl., 2015,54(18):5360-5363.

[36] YUAN F L,YUAN T,SUI L Z,et al.. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs [J]. Nat. Commun., 2018,9(1):2249-1-11.

[37] YUAN F L,WANG Z,LI X H,et al.. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes [J]. Adv. Mater., 2017,29(3):1604436-1-6.

[38] BAO L,ZHANG Z L,TIAN Z Q,et al.. Electrochemical tuning of luminescent carbon nanodots:from preparation to luminescence mechanism [J]. Adv. Mater., 2011,23(48):5801-5806.

[39] ZHU S J,ZHANG J H,TANG S J,et al.. Surface chemistry routes to modulate the photoluminescence of graphene quantum dots:from fluorescence mechanism to up-conversion bioimaging applications [J]. Adv. Funct. Mater., 2012,22(22):4732-4740.

[40] DING H,YU S B,WEI J S,et al.. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism [J]. ACS Nano, 2016,10(1):484-491.

[41] WANG H,SUN C,CHEN X R,et al.. Excitation wavelength independent visible color emission of carbon dots [J]. Nanoscale, 2017,9(5):1909-1915.

[42] YUAN B,GUAN S Y,SUN X M,et al.. Highly efficient carbon dots with reversibly switchable green-red emissions for trichromatic white light-emitting diodes [J]. ACS Appl. Mater. Interfaces, 2018,10(18):16005-16014.

[43] JIN S H,KIM D H,JUN G H,et al.. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups [J]. ACS Nano, 2013,7(2):1239-1245.

[44] KWON W,DO S,KIM J H,et al.. Control of photoluminescence of carbon nanodots via surface functionalization using Para-substituted anilines [J]. Sci. Rep., 2015,5:12604-1-10.

[45] LI D,JING P T,SUN L H,et al.. Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots [J]. Adv. Mater., 2018,30(13):1705913-1-8.

[46] ZHENG H Z,WANG Q L,LONG Y J,et al.. Enhancing the luminescence of carbon dots with a reduction pathway [J]. Chem. Commun., 2011,47(38):10650-10652.

[47] WANG Y L,ZHENG J X,WANG J L,et al.. Rapid microwave-assisted synthesis of highly luminescent nitrogen-doped carbon dots for white light-emitting diodes [J]. Opt. Mater., 2017,73:319-329.

[48] QU S N,ZHOU D,LI D,et al.. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering [J]. Adv. Mater., 2016,28(18):3516-3521.

[49] DING H,WEI J S,ZHONG N,et al.. Highly efficient red-emitting carbon dots with gram-scale yield for bioimaging [J]. Langmuir, 2017,33(44):12635-12642.

[50] DANG D K,SUNDARAM C,NGO Y L T,et al.. One pot solid-state synthesis of highly fluorescent N and S co-doped carbon dots and its use as fluorescent probe for Ag+ detection in aqueous solution [J]. Sens. Actuators B:Chem., 2018,255:3284-3291.

[51] ZHANG X T,LI D,ZHOU D,et al.. Dual-encryption based on facilely synthesized supra-(carbon nanodots) with water-induced enhanced luminescence [J]. RSC Adv., 2016,6(83):79620-79624.

[52] 娄庆,曲松楠. 基于超级碳点的水致荧光“纳米炸弹” [J]. 中国光学, 2015,8(1):91-98.

    LOU Q,QU S N. Water triggered luminescent “nano-bombs” based on supra-carbon-nanodots [J]. Chin. Opt., 2015,8(1):91-98. (in Chinese)

[53] JIANG K,WANG Y H,CAI C Z,et al.. Activating room temperature long afterglow of carbon dots via covalent fixation [J]. Chem. Mater., 2017,29(11):4866-4873.

[54] LIN C J,ZHUANG Y X,LI W H,et al.. Blue,green,and red full-color ultralong afterglow in nitrogen-doped carbon dots [J]. Nanoscale, 2019,11(14):6584-6590.

[55] TIAN Z,LI D,USHAKOVA E V,et al.. Multilevel data encryption using thermal-treatment controlled room temperature phosphorescence of carbon dot/polyvinylalcohol composites [J]. Adv. Sci., 2018,5(9):1800795-1-7.

[56] HE J L,HE Y L,CHEN Y H,et al.. Construction and multifunctional applications of carbon dots/PVA nanofibers with phosphorescence and thermally activated delayed fluorescence [J]. Chem. Eng. J., 2018,347:505-513.

[57] ZHOU Z J,TIAN P F,LIU X Y,et al.. Hydrogen peroxide-treated carbon dot phosphor with a bathochromic-shifted,aggregation-enhanced emission for light-emitting devices and visible light communication [J]. Adv. Sci., 2018,5(8):1800369-1-8.

[58] ZHOU D,ZHAI Y C,QU S N,et al.. Electrostatic assembly guided synthesis of highly luminescent carbon-nanodots@BaSO4 hybrid phosphors with improved stability [J]. Small, 2017,13(6):1602055-1-10.

[59] ZHOU D,LI D,JING P T,et al.. Conquering aggregation-induced solid-state luminescence quenching of carbon dots through a carbon dots-triggered silica gelation process [J]. Chem. Mater., 2017,29(4):1779-1787.

[60] WANG Z F,YUAN F L,LI X H,et al.. 53% Efficient red emissive carbon quantum dots for high color rendering and stable warm white-light-emitting diodes [J]. Adv. Mater., 2017,29(37):1702910-1-7.

[61] ZHAI Y C,ZHOU D,JING P T,et al.. Preparation and application of carbon-nanodot@NaCl composite phosphors with strong green emission [J]. J. Colloid Interface Sci., 2017,497:165-171.

[62] HE J L,HE Y L,CHEN Y H,et al.. Solid-state carbon dots with red fluorescence and efficient construction of dual-fluorescence morphologies [J]. Small, 2017,13(26):1700075-1-10.

[63] CHEN Y H,ZHENG M T,XIAO Y,et al.. A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission [J]. Adv. Mater., 2016,28(2):312-318.

[64] WANG F,CHEN Y H,LIU C Y,et al.. White light-emitting devices based on carbon dots electroluminescence [J]. Chem. Commun., 2011,47(12):3502-3504.

[65] ZHANG X Y,ZHANG Y,WANG Y,et al.. Color-switchable electroluminescence of carbon dot light-emitting diodes [J]. ACS Nano, 2013,7(12):11234-11241.

[66] CAO L,WANG X,MEZIANI M J,et al.. Carbon dots for multiphoton bioimaging [J]. J. Am. Chem. Soc., 2007,129(37):11318-11319.

[67] LIU C J,ZHANG P,ZHAI X Y,et al.. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence [J]. Biomaterials, 2012,33(13):3604-3613.

[68] BHUNIA S K,SAHA A,MAITY A R,et al.. Carbon nanoparticle-based fluorescent bioimaging probes [J]. Sci. Rep., 2013,3:1473-1-7.

[69] LI Q,OHULCHANSKYY T Y,LIU R L,et al.. Photoluminescent carbon dots as biocompatible nanoprobes for targeting cancer Cells in vitro [J]. J. Phys. Chem. C, 2010,114(28):12062-12068.

[70] LU S Y,SUI L Z,LIU J J,et al.. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence [J]. Adv. Mater., 2017,29(15):1603443-1-6.

[71] ZHENG M,RUAN S B,LIU S,et al.. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells [J]. ACS Nano, 2015,9(11):11455-11461.

[72] YANG Y Y,WANG X F,LIAO G C,et al.. iRGD-decorated red shift emissive carbon nanodots for tumor targeting fluorescence imaging [J]. J. Colloid Interface Sci., 2018,509:515-521.

[73] ZHENG M,LI Y,LIU S,et al.. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy [J]. ACS Appl. Mater. Interfaces, 2016,8(36):23533-23541.

[74] TANG J,KONG B,WU H,et al.. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and two-photon imaging [J]. Adv. Mater., 2013,25(45):6569-6574.

[75] PAN L L,SUN S,ZHANG L,et al.. Near-infrared emissive carbon dots for two-photon fluorescence bioimaging [J]. Nanoscale, 2016,8(39):17350-17356.

[76] WANG S S,LI C Y,QIAN M,et al.. Augmented glioma-targeted theranostics using multifunctional polymer-coated carbon nanodots [J]. Biomaterials, 2017,141:29-39.

[77] GE J C,LAN M H,ZHOU B J,et al.. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation [J]. Nat. Commun., 2014,5:4596-1-8.

[78] HUANG P,LIN J,WANG X S,et al.. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy [J]. Adv. Mater., 2012,24(37):5104-5110.

[79] GE J C,JIA Q Y,LIU W M,et al.. Red-emissive carbon dots for fluorescent,photoacoustic,and thermal theranostics in living mice [J]. Adv. Mater., 2015,27(28):4169-4177.

[80] XU G Y,BAO X,CHEN J Q,et al.. In vivo tumor photoacoustic imaging and photothermal therapy based on supra-(carbon nanodots) [J]. Adv. Healthcare Mater., 2019,8(2):1800995-1-7.

[81] BAO X,YUAN Y,CHEN J Q,et al.. In vivo theranostics with near-infrared-emitting carbon dots-highly efficient photothermal therapy based on passive targeting after intravenous administration [J]. Light:Sci. Appl., 2018,7:91-1-11.

张博涵, 田震, 李迪, 周鼎, 鲍鑫, 周正杰, 曲松楠. 发光碳纳米点的带隙调控及应用[J]. 发光学报, 2019, 40(6): 691. ZHANG Bo-han, TIAN Zhen, LI Di, ZHOU Ding, BAO Xin, ZHOU Zheng-jie, QU Song-nan. Luminescent Carbon Dots:Bandgap Modulation and Applications[J]. Chinese Journal of Luminescence, 2019, 40(6): 691.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!