光学 精密工程, 2016, 24 (12): 2931, 网络出版: 2017-01-23   

磁流变抛光对熔石英激光损伤特性的影响

Effect of magnetorheological finishing on laser damage properties of fused silica
作者单位
国防科技大学 机电工程与自动化学院 湖南超精密加工技术重点实验室, 湖南 长沙 410073
摘要
为进一步提升熔石英元件的激光损伤阈值, 研究了氢氟酸(HF)动态酸刻蚀条件下磁流变抛光工艺对熔石英元件激光损伤特性的影响规律。首先, 采用不同工艺制备熔石英元件, 测量它们的表面粗糙度。然后, 采用飞行时间-二次离子质谱法(OF-SIMS )检测磁流变加工前后熔石英元件中金属杂质元素的含量和深度; 采用1-on-1方法测试激光损伤阈值, 观测损伤形貌, 并对损伤坑的形态进行统计。最后, 分析了磁流变抛光工艺提升熔石英损伤阈值的原因。与未经磁流变处理的熔石英元件进行了对比, 结果显示: 磁流变抛光使熔石英元件的零概率激光损伤阈值提升了23.3%, 金属杂质元素含量也显著降低, 尤其是对熔石英激光损伤特性有重要影响的Ce元素被完全消除。得到的结果表明, 磁流变抛光工艺能够被用作HF酸动态酸刻蚀的前道处理工艺。
Abstract
To further increase the laser-induced damage threshold of the fused silica elements, the effect of Magnetorheological Finishing( MRF) technology on the laser damage properties of fused silica elements was investigated under the condition of Hydrogen Fluoride(HF) acid dynamic etching process. Firstly, the fused silica samples were prepared by different processes and their surface roughnesses were measured. Then, the contents and depths of metal impurity elements before and after MRF processing were measured by Time of Flight- Secondary Ion Mass Spectroscopy (TOF-SIMS). The damage threshold was measured by 1-on-1 test method, and the damage morphology was observed and statistically analyzed. Finally, the reasons of increasing the laser-induced damage threshold of the fused silica by the MRF were analyzed. The experimental results were compared with that of the fused silica without the MRF. It shows that the MRF can increase the laser damage threshold of fused silica by 23.3%. Moreover, the content of metal impurity elements is significantly reduced, especially the Ce element which has a significant impact on the laser damage performance of fused silica is completely eliminated. It concludes that the MRF process can be used as a pre-treatment process for HF acid dynamic etching process.
参考文献

[1] MOSES E I. National Ignition Facility: 1.8-MJ 750-TW ultraviolet laser[C]. Lasers and Applications in Science and Engineering, International Society for Optics and Photonics, 2004: 13-24.

[2] FLEUROT N, CAVAILLER C, BOURGADE J L. The Laser Megajoule (LMJ) project dedicated to inertial confinement fusion: development and construction status[J]. Fusion Engineering and Design, 2005, 74(1): 147-154.

[3] PENG H, ZHANG X, WEI X F, et al.. Design of 60-kJ SG-III laser facility and related technology development[C]. 26th European Conference on Laser Interaction with Matter (ECLIM 2000), International Society for Optics and Photonics, 2001: 98-103.

[4] DEMOS S G, NEGRES R A, RAMAN R N, et al.. Material response during nanosecond laser induced breakdown inside of the exit surface of fused silica[J]. Laser & Photonics Reviews, 2013, 7(3): 444-452.

[5] LIU H, YE X, ZHOU X, et al.. Subsurface defects characterization and laser damage performance of fused silica optics during HF-etched process[J]. Optical Materials, 2014, 36(5): 855-860.

[6] MATTHEWS M J, YANG S T, SHEN N, et al. Micro‐shaping, polishing, and damage repair of fused silica surfaces using focused infrared laser beams[J]. Advanced Engineering Materials, 2015, 17(3): 247-252.

[7] BUDE J, MILLER P, BAXAMUSA S, et al.. High fluence laser damage precursors and their mitigation in fused silica[J]. Optics Express, 2014, 22(5): 5839-5851.

[8] HONGJIE L, JIN H, FENGRUI W, et al.. Subsurface defects of fused silica optics and laser induced damage at 351 nm[J]. Optics Express, 2013, 21(10): 12204-12217.

[9] YANG L, XIANG X, MIAO X X, et al.. Influence of oil contamination on the optical performance and laser induced damage of fused silica[J]. Optics & Laser Technology, 2015, 75: 76-82.

[10] LAURENCE T A, BUDE J D, LY S, et al.. Extracting the distribution of laser damage precursors on fused silica surfaces for 351 nm, 3 ns laser pulses at high fluences (20-150 J/cm2)[J]. Optics Express, 2012, 20(10): 11561-11573.

[11] SURATWALA T I, MILLER P E, BUDE J D, et al.. HF‐based etching processes for improving laser damage resistance of fused silica optical surfaces[J]. Journal of the American Ceramic Society, 2011, 94(2): 416-428.

[12] CATRIN R, TAROUX D, CORMONT P, et al.. MRF, ELSM and STED: tools to study defects in fused silica optics[J]. SPIE, 2013, 8885: 88852D-88852D-7.

[13] DUAN W. The Effect of Surface Processing Methods on the Laser Induced Damage Threshold of Fused Silica[D]. University of Central Lancashire, 2014.

[14] 苗心向, 袁晓东, 程晓锋, 等. 表面污染物诱导熔石英损伤的热力学数值模拟[J]. 激光技术, 2011, 35(2): 285-288.

    MIAO X X, YUAN X D, CHENG X F, et al.. Thermal stress simulation of laser induced damage of fused silica by contamination on the surface[J]. Laser Technology, 2011, 35(2): 285-288. (in Chinese)

[15] 舒勇. 熔石英元件损伤可控高效阈值提升工艺关键技术研究[D].长沙: 国防科技大学, 2013.

    SHU Y. Study on the Key Technique of High-efficiency Low-damage Fabrication for High-performance Ultra-violet Laser Irradiated Fused Silica Optics [D]. Changsha: National University of Defense Technology, 2013. (in Chinese)

[16] CATRIN R, NEAUPORT J, TAROUX D, et al.. Magnetorheological finishing for removing surface and subsurface defects of fused silica optics[J]. Optical Engineering, 2014, 53(9): 092010-092010.

石峰, 万稳, 戴一帆, 彭小强. 磁流变抛光对熔石英激光损伤特性的影响[J]. 光学 精密工程, 2016, 24(12): 2931. SHI Feng, WAN Wen, DAI Yi-fan, PENG Xiao-qiang. Effect of magnetorheological finishing on laser damage properties of fused silica[J]. Optics and Precision Engineering, 2016, 24(12): 2931.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!