人工晶体学报, 2020, 49 (10): 1848, 网络出版: 2021-01-09  

还原氮化温度对氮化铌纳米管组成、结构与电化学性能影响研究

Effect of Reduction Nitriding Temperature on the Composition,Structure and Electrochemical Properties of Niobium Nitride Nanotubes
作者单位
1 华北理工大学材料科学与工程学院,唐山 063210
2 河北省无机非金属材料重点实验室,唐山 063210
摘要
以铌箔为基底,用阳极氧化法结合氨气还原氮化法制备出氮化铌纳米管,利用X射线衍射仪(XRD)、X射线光电子能谱(XPS)和扫描电镜(SEM)等结构表征手段和循环伏安法(CV)、充放电(GCD)和交流阻抗法(EIS)等电化学测试手段研究了还原氮化温度对纳米管的物相、形貌以及电化学性能的影响。结果表明,还原氮化后出现了氮化铌物相,以氧氮化铌固溶体形式存在,当还原氮化温度为700 ℃时,氮化铌纳米管阵列结构均匀,纳米管的孔内径约为35 nm,管壁厚度约为12 nm,纳米管长度约为1.5 μm,样品中内在阻抗和电荷转移电阻较小,在电流密度为0.1 mA/cm2时,其比电容为400 μF/cm2。
Abstract
The niobium nitride nanotubes were prepared on niobium foil by anodic oxidation combined with ammonia reduction nitridation. The effect of reduction nitriding temperature on the phase, morphology and electrochemical properties of the nanotubes were investigated by XRD, XPS, SEM and electrochemical measurements such as CV, GCD and EIS. The results show that niobium nitride phase in the form of niobium oxide nitride appears after reduction nitriding. When the reduction nitriding temperature is 700 ℃, the structure of nanotube is uniform array. The inner diameter of the nanotube is about 35 nm, the thickness of the tube wall is about 12 nm, the length of the nanotube is about 1.5 μm. Therefore, the intrinsic impedance and charge transfer resistance of the sample are low, and the specific capacitance is 400 μF/cm2 as the current density is 0.1 mA/cm2.
参考文献

[1] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7: 845-854.

[2] 金英华.超级电容器的性能研究与状态分析[D].大连:大连理工大学,2013.

[3] Lu X F, Li G R, Tong Y X. A review of negative electrode materials for electrochemical supercapacitors[J]. Science China Technological Sciences, 2015, 58(11): 1799-1808.

[4] Conway B E. Electrochemical supercapacitors:scientific fundamentals and technological applications[M]. New York: Kluwer Academic/Plenum Press, 1999.

[5] 董友珍,刘 洋.过渡金属氮化物在超级电容器中的应用[J].黑龙江大学自然科学学报,2014(4):490-497.

[6] Wei G, Neelam Singh, Li S, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nature Nanotechnology, 2011, 6(8): 496-500.

[7] 乜广弟,朱 云,田 地,等.静电纺丝纳米纤维基超级电容器电极材料的研究进展[J].高等学校化学学报,2018(7): 1349-1363.

[8] Xu B, Chen Y F, Wei G, et al. Activated carbon with high capacitance prepared by NaOH activation for supercapacitors[J]. Materials Chemistry & Physics, 2010, 124(1): 504-509.

[9] Wang H Y, Li B, Teng J X, et al. N-doped carbon-coated TiN exhibiting excellent electrochemical performance for supercapacitors[J]. Electrochimica Acta, 2017, 257: 56-63.

[10] Saravanakumar B, Purushothaman K K, Muralidharan G. Interconnected V2O5 nanoporous network for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4484-4490.

[11] 杨 杨.超级电容器电极材料用二氧化锰的合成及其电化学性能的研究[D].吉林:吉林大学,2013.

[12] Sun D F, Lang J W, Yan X B, et al. Fabrication of TiN nanorods by electrospinning and their electrochemical properties[J]. Journal of Solid State Chemistry, 2011, 184(5): 1333-1338.

[13] Xie Y B, Wang Y, Du H X. Electrochemical capacitance performance of titanium nitride nanoarray[J]. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2013, 178(20): 1443-1451.

[14] An G H, Lee D Y, Ahn H J. Vanadium nitride encapsulated carbon fibre networks with furrowed porous surfaces for ultrafast asymmetric supercapacitors with robust cycle life[J]. Journal of Materials Chemistry A, 2017, 5(37): 19714-19720.16-19.

[15] Lee K H, Lee Y W, Ko A R, et al. Single-crystalline mesoporous molybdenum nitride nanowires with improved electrochemical properties[J]. Journal of the American Ceramic Society, 2013, 96(1): 37-39.

[16] Zhao J H, Lin J, Wei H, et al. Surface enhanced Raman scattering substrates based on titanium nitride nanorods[J]. Optical Materials, 2015, 47: 219-224.

[17] 吕东风,卜景龙,魏恒勇,等.静电纺丝结合还原氮化法制备多孔TiN纤维及其电化学性能[J].稀有金属材料与工程,2017(10):387-392.

[18] 章颖怡.超级电容储能技术发展现状与前景[J].宁波化工,2015(3):17-19.

[19] Gao B, Xiao X, Su J J, et al. Synthesis of mesoporous niobium nitride nanobelt arrays and their capacitive properties[J]. Applied Surface Science, 2016, 383: 57-63.

[20] 尹从明,徐立强.锂离子电池负极材料立方相氮化铌纳米材料的制备与性能(英文)[J].无机化学学报,2012,12:2612-2616.

[21] Wang P Y, Wang R T, Lang J W, et al. Porous niobium nitride as a capacitive anode material for advanced Li-ion hybrid capacitors with superior cycling stability[J]. Journal of Materials Chemistry A, 2016, 4(25): 9760-9766.

[22] Huang C, Yang Y, Fu J J, et al. Flexible Nb4N5/rGO electrode for high-performance solid state supercapacitors[J]. Nanoscience and Nanotechnology, 2018, 18: 30-38.

[23] Wang G, Qian B Q, Wang Y W, et al. Electrospun porous hierarchical carbon nanofibers with tailored structures for supercapacitors and capacitive deionization[J]. New Journal of Chemistry, 2016, 40(4): 3786-3792.

[24] Arico A, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices[J]. Nature Materials, 2005, 4(5): 366-77.

[25] An K H, Won S, Kim Y, et al. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes[J]. Advanced Functional Materials, 2001, 11(5): 387-392.

[26] Kaempgen M, Candace K Chan, Ma J, et al. Printable thin film supercapacitors using single-walled carbon nanotubes[J]. Nano Letters, 2009, 9(5): 1872.

[27] Lu X H, Wang G N, Zhai T, et al. Hydrogenated TiO2 Nanotube Arrays for Supercapacitors[J]. Nano Letters, 2012, 12(3): 1690-1696.

[28] Yang Y, Ruan G D, Xiang C S, et al. Flexible three-dimensional nanoporous metal-based energy devices[J]. Journal of the American Chemical Society, 2014, 136(17): 6187-6190.

[29] Cui H L, Zhu G L, Liu X Y, et al. Niobium nitride Nb4N5 as a new high-performance electrode material for supercapacitors[J]. Advanced Science, 2016, 2(12): 1500126.

[30] Mirvakili S M, Hunter I W. Vertically aligned niobium nanowire arrays for fast-charging micro-supercapacitors[J]. Advanced Materials, 2017, 29(27): 1700671.1-1700671.6.

[31] Liu K, Yao Y, Lv T, et al. Textile-like electrodes of seamless graphene/nanotubes for wearable and stretchable supercapacitors[J]. Journal of Power Sources, 2020, 446: 227355.

[32] Koscielska B. Electrical conductivity of NbN-SiO2 films obtained by ammonolysis of Nb2O5-SiO2 sol-gel derived coatings[J]. Journal of Non-Crystalline Solids, 2008, 354(14): 1549-1552.

[33] Alfonso J E, Buitrago J, Torres J, et al. Influence of fabrication parameters on crystallization, microstructure, and surface composition of NbN thin films deposited by rf magnetron sputtering[J]. Journal of Materials Science, 2010, 45(20): 5528-5533.

[34] Jouve G, Severac C, Cantacuzene S. XPS study of NbN and (NbTi)N superconducting coatings[J]. Thin Solid Films, 1996, 287(1-2): 146-153.

[35] Baunemann A, Bekermann D, Thiede T B, et al. Mixed amido/imido/guanidinato complexes of niobium:potential precursors for MOCVD of niobium nitride thin films[J]. Dalton Transactions, 2008, 28(28): 3715-3722.

[36] Gao S S, Tang Y K, Wang L, et al. Coal-based hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and li-ion batteries[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3255-3263.

[37] 郑俊生,秦 楠,郭 鑫,等.高比能超级电容器:电极材料、电解质和能量密度限制原理[J].材料工程:1-13.http://kns.cnki.net/kcms/detail/11.1800.TB.20191118.1619.033.html.

[38] 李 寒.核/壳结构双金属化合物纳米阵列的构筑及其电化学性能研究[D].乌鲁木齐:新疆大学,2019.

[39] Shim H W, Lim A H, Kim J C, et al. Scalable one-pot bacteria-templating synthesis route toward hierarchical, porous-Co3O4 superstructure for supercapacitor electrodes[J]. Scientific Reports, 2013, 3(7): 2325.

王学沛, 呼世磊, 崔帅, 吕东风, 许靓玥, 魏恒勇, 崔燚, 陈越军, 魏颖娜, 卜景龙. 还原氮化温度对氮化铌纳米管组成、结构与电化学性能影响研究[J]. 人工晶体学报, 2020, 49(10): 1848. WANG Xuepei, HU Shilei, CUI Shuai, LYU Dongfeng, XU Jingyue, WEI Hengyong, CUI Yi, CHEN Yuejun, WEI Yingna, BU Jinglong. Effect of Reduction Nitriding Temperature on the Composition,Structure and Electrochemical Properties of Niobium Nitride Nanotubes[J]. Journal of Synthetic Crystals, 2020, 49(10): 1848.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!