人工晶体学报, 2020, 49 (10): 1800, 网络出版: 2021-01-09  

Ti含量对溶胶-凝胶法制备Ti、Ga共掺ZnO薄膜性能的影响

Effect of Ti Content on the Properties of Ti and Ga Co-Doped ZnO Thin Films Prepared by Sol-Gel Method
作者单位
三峡大学材料与化工学院,无机非金属晶态与能源转换材料重点实验室,宜昌 443002
摘要
采用溶胶-凝胶旋涂法在玻璃衬底上沉积纳米结构Ti、Ga共掺ZnO薄膜(TGZO,Ga掺杂量为1.0%(原子分数,下同)),用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、分光光度计(UV-Vis)、四探针测试仪、霍尔效应测试仪研究了Ti含量对TGZO薄膜的物相组成、表面形貌、电学和光学性能的影响。结果表明:所有TGZO薄膜均表现出六方纤锌矿的多晶结构,并具有(002)择优取向生长,在380~780 nm波长范围内具有良好的透射率(>86%);随着Ti含量的增加,TGZO薄膜的晶粒尺寸和可见光平均透射率均先增加后减小,而光学带隙和电阻率先减小后增加;Ti掺杂量为1.0%时,具有最高的可见光透射率92.82%,最窄的光学带隙3.249 eV,以及最低电阻率2.544×10-3 Ω·cm。
Abstract
Nano-structured Ti and Ga co-doped ZnO (TGZO) thin films were synthesized with 1.0%(atomic fraction, the same below) Ga and different concentrations of Ti by sol-gel spin coating method. The influences of Ti doping concentration on the phase composition, surface morphology, electrical and optical properties of TGZO films were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-Vis spectrophotometer, four point probes and Hall measurement system, respectively. The results show that all TGZO thin films exhibit polycrystalline with a hexagonal wurtzite structure and slight (002) preferred orientation, which show excellent transmittance (>86%) in the wavelength range between 380 nm to 780 nm. With the increase of Ti content, both the grain size and the average transmittance of visible light of the TGZO film increase first and then decrease, while the optical band gap and resistivity decrease and then increase. The highest visible light transmittance is 92.82%, the narrowest optical band gap is 3.249 eV and the lowest resistivity is 2.544×10-3 Ω·cm obtained when doping 1.0% Ti.
参考文献

[1] Wang Z L. Zinc oxide nanostructures: growth, properties and applications[J]. Journal of Physics Condensed Matter, 2004, 16(25): 829-858.

[2] Ranjith K S, Nivedita L R, Asokan K, et al. Robust water repellent ZnO nanorod array by Swift heavy ion irradiation: effect of electronic excitation induced local chemical state modification[J]. Scientific Reports, 2017, 7(1): 3251-3262.

[3] olak H, Karakse E. Green synthesis and characterization of nanostructured ZnO thin films using Citrus aurantifolia, (lemon) peel extract by spin-coating method[J]. Journal of Alloys & Compounds, 2017, 690: 658-662.

[4] Sun Y H, Wang H L, Chen J, et al. Structural and optoelectronic properties of AZO thin films prepared by RF magnetron sputtering at room temperature[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6): 1655-1662.

[5] Zhang Q, Dandeneau C S, Zhou X, et al. ZnO nanostructures for dye-sensitized solar cells[J]. Advanced Materials, 2009, 21(41): 4087-4108.

[6] Wang H, Sun Y, Fang L, et al. Growth and characterization of high transmittance GZO films prepared by sol-gel method[J]. Thin Solid Films, 2016, 615: 19-24.

[7] 程志敏,孙宜华,方 亮,等.膜厚对溶胶-凝胶法制备Al、Ga共掺杂ZnO薄膜性能的影响[J].三峡大学学报(自然科学版),2018,40(3):95-99.

[8] Tsai T Y, Chen T H, Tu S L, et al. Effect of annealing temperature on the optoelectronic characteristic of Al and Ga co-doping ZnO thin films[J]. Optical & Quantum Electronics, 2016, 48(10): 475-476.

[9] Liu W S, Hsieh W T, Chen S Y, et al. Improvement of CIGS solar cells with high performance transparent conducting Ti-doped GaZnO thin fifilms[J]. Solar Energy, 2018, 174: 83-86

[10] Kim D, Yun I, Kim H, et al. Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells[J]. Current Applied Physics, 2010, 10(3): s459-s462.

[11] Qian X, Cao Y, Guo B, et al. Atomic layer deposition of Al-doped ZnO films using aluminum isopropoxide as the Al precursor[J]. Chemical Vapor Deposition, 2013, 19(4-6): 180-185.

[12] Taabouche A, Bouabellou A, Kermiche F, et al. Effect of substrates on the properties of ZnO thin films grown by pulsed laser deposition[J]. Advances in Materials Physics & Chemistry, 2013, 3(4): 209-213.

[13] Cui X Z, Zhang T C, Mei Z X, et al. Growth of single-crystalline ZnO film with two-dimensional periodic structure on Si(111) substrate by molecular beam epitaxy[J]. Journal of Crystal Growth, 2008, 310(24): 5428-5431.

[14] Hou Y, Jayatissa A H. Effect of laser irradiation on gas sensing properties of sol-gel derived nanocrystalline Al-doped ZnO thin films[J]. Thin Solid Films, 2014, 562: 585-591.

[15] Monemdjou A, Ghodsi F E, Mazloom J. The effects of surface morphology on optical and electrical properties of nanostructured AZO thin films:fractal and phase imaging analysis[J]. Superlattices and Microstructures, 2014, 74: 19-33.

[16] Rao T P, Kumar M C S, Hussain N S. Effects of thickness and atmospheric annealing on structural, electrical and optical properties of GZO thin films by spray pyrolysis[J]. Journal of Alloys and Compounds, 2012, 541: 495-504.

[17] Xu Z Q, Deng H, Xie J, et al. Al-doping effects on optical properties of c-axis orientated ZnO∶Al thin films prepared by the sol-gel method[J]. Journal of Optoelectronics Laser, 2006, 17(3): 257-260.

[18] Kang J H, Lee M H, Kim D W, et al. The annealing effect on damp heat stability of AGZO thin films prepared by DC moving magnetron sputtering[J]. Current Applied Physics, 2011, 11(3):333-336.

[19] Agashe C, Kluth O, Schpe G, et al. Optimization of the electrical properties of magnetron sputtered aluminum-doped zinc oxide films for opto-electronic applications[J]. Thin Solid Films, 2003, 442(1-2): 167-172.

[20] Chen J, Sun Y H, Lv X, et al. Preparation and characterization of high-transmittance AZO films using RF magnetron sputtering at room temperature[J]. Applied Surface Science, 2014, 317: 1000-1003.

[21] Wu F, Fang L, Pan Y J, et al. Seebeck and magnetoresistive effects of Ga-doped ZnO thin films prepared by RF magnetron sputtering[J]. Applied Surface Science, 2009, 255(21): 8855-8859.

[22] Cebulla R, Wendt R, Ellmer K. Al-doped zinc oxide films deposited by simultaneous RF and DC excitation of a magnetron plasma: relationships between plasma parameters and structural and electrical film properties[J]. Journal of Applied Physics, 1998, 83(2): 1084-1095.

[23] Li Z Z, Chen Z Z, Huang W, et al. The transparence comparison of Ga- and Al-doped ZnO thin films[J]. Applied Surface Science, 2011, 257(20): 8486-8489.

[24] Tsay C Y, Fan K S, Lei C M. Synthesis and characterization of sol-gel derived gallium-doped zinc oxide thin films[J]. Journal of Alloys and Compounds, 2012, 512(1): 222.

[25] Jun M C, Park S U, Koh J H. Comparative studies of Al-doped ZnO and Ga-doped ZnO transparent conducting oxide thin films[J]. Nanoscale Research Letters, 2012, 7(1): 639.

[26] Shinde S S, Shinde P S, Oh Y W, et al. Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films[J]. Applied Surface Science, 2012, 258(24): 9969-9976.

[27] Yang W, Liu Z, Peng D L, et al. Room-temperature deposition of transparent conducting Al-doped ZnO films by RF magnetron sputtering method[J]. Applied Surface Science, 2009, 255(11): 5669-5673.

[28] Berggren K F, Semelius B E. Band-gap narrowing in heavily doped many-valley semiconductors[J]. Physics Review B, 1981, 24(4): 1971-1986.

[29] Neil P Dasgupta, Sebastian Neubert, Wonyoung Lee, et al. Atomic layer deposition of Al-doped ZnO films: effect of grain orientation on conductivity[J]. Dissertations & Theses Gradworks, 2010, 50(9):5914-5919.

[30] Wang M, Liang W, Yang Y, et al. Sol-gel derived transparent conducting ZnO∶Al thin films:effect of crystallite orientation on conductivity and self-assembled network texture[J]. Materials Chemistry & Physics, 2012, 134(2/3):845-850.

王瑞, 孙宜华, 黄龙, 敖来远, 方亮, 骆秋子. Ti含量对溶胶-凝胶法制备Ti、Ga共掺ZnO薄膜性能的影响[J]. 人工晶体学报, 2020, 49(10): 1800. WANG Rui, SUN Yihua, HUANG Long, AO Laiyuan, FANG Liang, LUO Qiuzi. Effect of Ti Content on the Properties of Ti and Ga Co-Doped ZnO Thin Films Prepared by Sol-Gel Method[J]. Journal of Synthetic Crystals, 2020, 49(10): 1800.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!