激光与光电子学进展, 2014, 51 (11): 111702, 网络出版: 2014-11-07   

激光扫描共聚焦技术在近红外荧光成像中的应用 下载: 846次

Application of Laser Scanning Confocal Technology in Near Infrared Fluorescence Imaging
昌剑 1,2,*张运海 1,2张欣 1,2姜琛昱 1,2
作者单位
1 中国科学院苏州生物医学工程技术研究所医用光学室,江苏 苏州 215163
2 江苏省医用光学重点实验室, 江苏 苏州 215163
摘要
为实现高信噪比(SNR)的深层生物组织成像,结合了激光扫描共聚焦成像技术和近红外(NIR)荧光成像技术,根据近红外荧光成像要求设计了一套激光扫描共聚焦近红外荧光成像实验系统,对注入近红外荧光染料LDS925 小鼠的尾部成像后获得了小鼠尾部近红外荧光图像和近红外共聚焦荧光图像。实验结果表明小鼠尾部近红外共聚焦荧光图像信噪比显著优于小鼠尾部近红外荧光图像,采用均方差和峰谷(PV)值进行评估时,近红外荧光成像荧光信号强度分布的均方差值和PV 值分别为864 和102;共聚焦荧光成像的荧光信号强度分布的均方差值和PV 值分别为1459 和255;进一步表明激光扫描共聚焦成像技术在近红外荧光成像中应用是可行的,可以实现深层组织的高信噪比共聚焦成像。
Abstract
In order to obtain high signal-to-noise ratio (SNR) tissue images with deeper imaging depths, the laser scanning confocal technology with the near infrared (NIR) fluorescence imaging is integrated and a laser scanning confocal NIR fluorescence imaging system based on requirements of NIR fluorescence imaging is established. A laboratory mouse injected with NIR fluorescence labeling LDS925 is placed in this system and a non-confocal NIR fluorescence image and a confocal NIR fluorescence images for the tail of laboratory mouse is obtained. The experimental results show that when evaluated by the mean square error and the peak valley (PV) value, the mean square error and the PV value is 864 and 102 respectively for the non-confocal NIR fluorescence image and 1459 and 255 for the confocal NIR fluorescence image, which further shows that the laser scanning confocal technology is applicable to the NIR fluorescence imaging, and the in vivo and high SNR tissue imaging with deeper imaging depths can be achieved.
参考文献

[1] D Maxwell, Q Chang, X Zhang, et al.. An improved cell penetrating, caspase-activatable, near-infrared fluorescent peptide for apoptosis imaging [J]. Bioconjug Chem, 2009, 20(4): 702-709.

[2] J Klohs, M Gr3/4fe, K Graf, et al.. In vivo imaging of the inflammatory receptor CD40 after cerebral is chemia using a fluorescent antibody [J]. Stroke, 2008, 39(10): 2845-2852.

[3] Y Q Gu, Z Y Qian, Y L Song. In Vivo Near Infrared Techniques for Protein Drug Development [M]. Encyclopaedia of Heathcare Information System, IGI Global, 2008.

[4] 邓大伟, 刘飞, 曹洁, 等. 两种近红外荧光探针的合成及肿瘤靶向研究[J]. 中国激光, 2010, 37(11): 2735-2742.

    Deng Dawei, Liu Fei, Cao Jie, et al.. Synthesis and tumor targeting research of two near-infrared fluorescence probes [J]. Chinese J Lasers, 2010, 37(11): 2735-2742.

[5] 吴春阳, 卢启鹏, 丁海泉, 等. 利用人体组织液进行近红外无创血糖测量[J]. 光学学报, 2013, 33(11): 1117001.

    Wu Chunyang, Lu Qipeng, Ding Haiquan, et al.. Noninvasive blood glucose sensing with near-infrared spectroscopy based on interstitial fluid [J]. Acta Optica Sinica, 2013, 33(11): 1117001.

[6] K Welsher, Z Liu, D Daranciang, et al.. Selective probing and imaging of cells with single walled carbon nanotubes as near-infrared fluorescent molecules [J]. Nano Letters, 2008, 8(2): 586-590.

[7] W C Chan, S Nie. Quantum dot bioconjugates for ultrasensitive nonisotopic detection [J]. Science, 1998, 281(5385): 2016-2018.

[8] Bruchez M Jr , Moronne M, Gin P, et al.. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281(5385): 2013-2016.

[9] C Li, Y Zhang, M Wang, et al.. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-II window [J]. Biomaterials, 2014, 35(1): 393-400.

[10] 王懋, 李春炎, 孙云飞, 等. 近红外小动物活体荧光成像系统的研制[J]. 光学学报, 2013, 33(6): 0617003.

    Wang Mao, Li Chunyan, Sun Yunfei, et al.. Research of near-infrared small living animal fluorescence imaging system [J]. Acta Optica Sinica, 2013, 33(6): 0617003.

[11] 范小康, 王欣, 李夏, 等. Er3+单掺与Er3+/Pr3+共掺碲酸盐玻璃的2.7 mm光谱性质及能量转移过程[J]. 光学学报, 2014, 34(1): 0116001.

    Fan Xiaokang, Wang Xin, Li Xia, et al.. 2.7 mm fluorescence and energy transfer process in Er3+-doped and Er3+/Pr3+ codoped tellurite glasses [J]. Acta Optica Sinica, 2014, 34(1): 0116001.

[12] 徐磊, 夏海平. 多元金属硫化物的近红外吸收性能[J]. 中国激光, 2013, 40(6): 0606001.

    Xu Lei, Xia Haiping. Multi-metal sulfide for absorbing near infrared light [J]. Chinese J Lasers, 2013, 40(6): 0606001.

[13] 程继萌, 李韦韦, 赵国营, 等. 掺镱铋酸盐玻璃近红外发光的温度特性[J].中国激光, 2013, 40(10): 1015001.

    Cheng Jimeng, Li Weiwei, Zhao Guoying, et al.. Temperature characteristics of near-infrared luminescence of Yb doped bismuth-based glasses [J]. Chinese J Lasers, 2013, 40(10): 1015001.

[14] 苏畅, 丁海曙. 生物组织光谱学技术[J]. 国外医学(生物医学工程分册), 1995, 18(6): 316-323.

    Su Chang, Ding Haishu. Spectroscopy technology in biological tissue [J]. Foreign Medical Sciences (Biomedical Engineering Fascicle), 1995, 18(6): 316-323.

[15] 王乐新, 赵志敏. 正常和异常血清的共振散射光谱[J]. 发光学报, 2011, 32(2): 200-203.

    Wang Lexin, Zhao Zhimin. Resonance scattering spectrum of normal and abnormal serum [J]. Chinese Journal of Luminescence, 2011, 32(2): 200-203.

[16] 兰秀风. 光与生物组织相互作用的光谱特性研究[D]. 南京: 南京理工大学, 2005.

    Lan Xiufeng. Studies on Spectroscopy Characteristic of the Interaction between Light and Bio-tissue [D]. Nanjing: Nanjing University of Science & Technology, 2005.

[17] J B Pawley. Handbook of Biological Confocal Microscopy [M]. Third Edition. Berlin: Springer, 2006. 251-264.

[18] 肖昀, 张运海, 王真, 等. 入射激光对激光扫描共聚焦显微镜分辨率的影响[J]. 光学 精密工程, 2014, 22(1): 31-38.

    Xiao Yun, Zhang Yunhai, Wang Zhen, et al.. Effect of incident laser on resolution of LSCM [J]. Optics and Precision Engineering, 2014, 22(1): 31-38.

[19] Yunhai Zhang, Bian Hu, Yakang Dai, et al.. A new multichannel spectral imaging laser scanning confocal microscope [J]. Computational and Mathematical Methods in Medicine, 2013, 2013. 890203. doi: 10.1155/2013/890203.

昌剑, 张运海, 张欣, 姜琛昱. 激光扫描共聚焦技术在近红外荧光成像中的应用[J]. 激光与光电子学进展, 2014, 51(11): 111702. Chang Jian, Zhang Yunhai, Zhang Xin, Jiang Chenyu. Application of Laser Scanning Confocal Technology in Near Infrared Fluorescence Imaging[J]. Laser & Optoelectronics Progress, 2014, 51(11): 111702.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!