半导体光电, 2020, 41 (4): 527, 网络出版: 2020-08-18  

氧化镓生长模拟中的流场与反应参数优化研究

Optimization of Flow Field and Reaction Parameters in the Growth Simulation of Gallium Oxide
作者单位
1 南京邮电大学 电子与光学工程学院, 南京 210023
2 南京大学 电子科学与工程学院, 南京 210023
摘要
建立了用于生长直径为15.24cm(6inch)的Ga2O3材料的氢化物气相外延(HVPE)生长腔的二维几何模型,对Ga2O3材料的生长进行了数值模拟。依次优化了GaCl进气速度、O2进气速度、喷口到衬底间的距离等关键参数,在较高生长速率下使衬底上的Ga2O3膜厚相对均匀度达到7.02%。此外,对仿真中不同的反应活化能设置进行了对比实验,发现活化能参数虽然对平均生长速率有明显影响,但是对样品的生长速率分布及均匀性影响不大。
Abstract
A twodimensional geometry model of hydride vapor phase epitaxy (HVPE) growth chamber with the diameter of 15.24cm (6inch) was established to simulate the growth of Ga2O3 material. The key parameters were optimized, such as the inlet velocity of GaCl and O2 and the distance between the nozzle and the substrate. The uniformity of the thickness of Ga2O3 film on the substrate reached 7.02% at a relatively high growth rate. In addition, simulation experiments were carried out under different reactive activation energy parameters. It is found that although the activation energy parameters affect the average growth rate significantly, they have little influence on the optimal design of growth rate distribution and uniformity of the samples.
参考文献

[1] Higashiwaki M, Sasaki K, Murakami H, et al. Recent progress in Ga2O3 power devices[J]. Semiconductor Science and Technol., 2016, 31(3): 034001.

[2] 穆文祥. βGa2O3单晶的生长、加工及性能研究[D]. 济南: 山东大学, 2018.

    Mu Wenxiang. Research on growth, processing and properties of βGa2O3 single crystal[D]. Jinan: Shan Dong University, 2018.

[3] 王 伟, 褚夫同, 岳 超, 等. βGa2O3薄膜的分子束外延生长及其紫外光敏特性研究[J]. 电子元件与材料, 2013, 32(5): 1719.

    Wang Wei, Chu Futong, Yue Chao, et al. Research on the molecular beam epitaxial growth of βGa2O3 thin film and its ultraviolet photosensitivity[J]. Electronic Components and Materials, 2013, 32(5): 1719.

[4] Murakami H, Nomura K, Goto K, et al. Homoepitaxial growth of βGa2O3 layers by halide vapor phase epitaxy[J]. Appl. Phys. Express, 2015, 8: 015503.

[5] Xiong Zening, Xiu Xiangqian, Li Yuewen, et al. Growth of βGa2O3 films on sapphire by hydride vapor phase epitaxy[J]. Chinese Phys. Lett., 2018, 35(5): 162164.

[6] Nomura K, Goto K, Togashi R, et al. Thermodynamic study of βGa2O3 growth by halide vapor phase epitaxy[J]. J. of Crystal Growth, 2014, 405: 1922.

[7] 叶大伦, 胡建华. 实用无机物热力学数据手册[M]. 第2版. 北京: 冶金工业出版社, 2002: 391.

    Ye Dalun, Hu Jianhua. Handbook of Thermodynamic Data for Practical Inorganics[M]. 2nd Edi. Beijing: Metallurgical Industry Press, 2002: 391.

[8] 卡尔L·约斯. Matheson气体数据手册[M]. 第7版. 北京: 化学工业出版社, 2003: 933.

    Carl L·Yaws. Matheson Gas Data Manual[M]. 7th Edi. Beijing: Chemical Industry Press, 2003: 933.

[9] 蒋维钧. 化工原理. 下册[M]. 第2版. 北京: 清华大学出版社, 2003: 1718.

    Jiang Weijun. Principles of Chemical Engineering. Volume Ⅱ[M]. 2nd Edi. Beijing: Tsinghua University Press, 2003: 1718.

[10] Safvi S A, Perkins N R, Horton M N, et al. Effect of reactor geometry and growth parameter on the uniformity and material properties[J]. J. of Crystal Growth, 1997, 182: 233237.

[11] 景 杰. 基于数值模拟的HVPE反应器设计与优化[D]. 南京: 南京邮电大学, 2016.

    Jing Jie. Design and optimization of HVPE reactor based on numerical simulation[D]. Nanjing: Nanjing University of Posts and Telecommun., 2016.

[12] Oshima Y, V Llora E G, Shimamura K. Quasiheteroepitaxial growth of βGa2O3 on offangled sapphire (0001) substrates by halide vapor phase epitaxy[J]. J. of Crystal Growth, 2015, 410: 5358.

[13] 张 红, 左 然. 反应动力学参数变化对MOVPE生长GaN的反应路径模拟的影响[J]. 中国科学: 技术科学, 2017(6): 4557.

    Zhang Hong, Zuo Ran. Effects of changes in reaction kinetic parameters on the simulation of the reaction path of GaN grown by MOVPE[J]. Science China: Technical Sciences, 2017(6): 4557.

[14] Nikolaev V I, Pechnikov A I, Stepanov S I, et al. Epitaxial growth of (201) βGa2O3 on (0001) sapphire substrates by halide vapour phase epitaxy[J]. Materials Science in Semiconductor Proc., 2016, 47: 1619.

戴必胜, 陈琳, 陶志阔, 修向前. 氧化镓生长模拟中的流场与反应参数优化研究[J]. 半导体光电, 2020, 41(4): 527. DAI Bisheng, CHEN Lin, TAO Zhikuo, XIU Xiangqian. Optimization of Flow Field and Reaction Parameters in the Growth Simulation of Gallium Oxide[J]. Semiconductor Optoelectronics, 2020, 41(4): 527.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!