光学学报, 2015, 35 (6): 0622005, 网络出版: 2015-05-20   

基于等效膜层法的极紫外光刻含缺陷掩模多层膜仿真模型

Simulation Model Based on Equivalent Layer Method for Defective Mask Multilayer in Extremeultra violet Lithography
作者单位
1 中国科学院上海光学精密机械研究所信息光学与光电技术实验室, 上海 201800
2 中国科学院大学, 北京 100049
摘要
建立了一个基于等效膜层法的极紫外光刻含缺陷掩模多层膜仿真模型。通过等效膜层法求解含缺陷多层膜无缺陷区域和含缺陷区域不同位置的反射系数,准确快速地仿真含缺陷多层膜的衍射谱。与波导法严格仿真相比,200 nm 尺寸时仿真速度提高9倍左右。与改进单平面近似模型和基于单平面近似的简化模型相比,该模型对衍射谱和空间像的仿真精度有了较大提高,并且仿真精度随缺陷尺寸和入射角的变化很小。以+1 级衍射光为例,6°入射时,与改进单平面近似模型和简化模型相比,该模型对衍射谱振幅的仿真误差分别减小了77%和63%。
Abstract
A model based on the equivalent layer method is developed to simulate defective mask multilayer in extreme ultraviolet (EUV) lithography. In this model, the defective multilayer is divided into defect free region and defective region. The reflection coefficients of two regions in different locations are computed by the equivalent layer method. The spectrum of defective multilayer can be obtained fast and accurately. Simulation time of the proposed model is 1/9 times that of the waveguide method for a multilayer of 200 nm size. Compared with advanced single surface approximation (SSA) model and the simplified model based on SSA, the simulation accuracy of the multilayer spectrum and aerial image of the proposed model is improved. The errors of simulated amplitude and aerial image are also with little fluctuation in different defect sizes and incidence angles. Taking + 1 order diffraction as an example, compared with advanced SSA model and the simplified model based on SSA, in 6° incidence angle, the simulated amplitude error of the proposed model decreased as much as 77% and 63%, respectively.
参考文献

[1] R Peeters, S Lok, E Alphen, et al.. ASML′s NXE platform performance and volume introduction[C]. SPIE, 2013, 8679: 86791F.

[2] R Peeters, S Lok, J Mallman, et al.. EUV lithography: NXE platform performance overview[C]. SPIE, 2014, 9048: 90481J.

[3] 杜宇禅, 李海亮, 史丽娜, 等. 32 nm 节点极紫外光刻掩模的集成研制[J]. 光学学报, 2013, 33(10): 1034002.

    Du Yuchan, Li Hailiang, Shi Lina, et al.. Integrated development of extreme ultraviolet lithography mask at 32 nm node[J]. Acta Optica Sinica, 2013, 33(10): 1034002.

[4] A Erdmann, P Evanschitzky, T Bret, et al.. Analysis of EUV mask multilayer defect printing characteristics[C]. SPIE, 2012, 8322: 83220E.

[5] C H Clifford, A R Neureuther. Smoothing based model for images of isolated buried EUV multilayer defects[C]. SPIE, 2008, 6921: 692119.

[6] T Pistor, Y Deng, A Neureuther. Extreme ultraviolet mask defect simulation: low-profile defects[J]. J Vac Sci Technol B, 2000, 18(6): 2926-2929.

[7] P Evanschitzky, A Erdmann. Fast near field simulation of optical and EUV masks using the waveguide method[C]. SPIE, 2007, 6533: 65330Y.

[8] C H Clifford, A R Neureuther. Fast simulation of buried EUV mask defect interaction with absorber features[C]. SPIE, 2007, 6517: 65170A.

[9] E M Gullikson, C Cerjan, D G Stearns, et al.. Practical approach for modeling extreme ultraviolet lithography mask defects[J]. J Vac Sci Technol B, 2002, 20(1): 81-86.

[10] C Sambale, T Schmoeller, A Erdmann, et al.. Rigorous simulation of defective EUV multilayer masks[C]. SPIE, 2003, 5256: 1239-1248.

[11] M C Lam, A R Neureuther. Fast simulation methods for defective EUV mask blank inspection[C]. SPIE, 2004, 5567: 741-750.

[12] 刘晓雷, 李思坤, 王向朝. 极紫外光刻含缺陷多层膜衍射谱仿真简化模型[J]. 光学学报, 2014, 34(9): 0905002.

    Liu Xiaolei, Li Sikun, Wang Xiangzhao. Simplified model for defective multilayer diffraction spectrum simulation in extreme ultraviolet lithography[J]. Acta Optica Sinica, 2014, 34(9): 0905002.

[13] C H Clifford. Simulation and Compensation Methods for EUV Lithography Masks with Buried Defects[D]. Berkeley: University of California, 2010: 19-20.

[14] A Erdmann, P Evanschitzky, T Bret, et al.. Modeling strategies for EUV mask multilayer defect dispositioning and repair[C]. SPIE, 2013, 8679: 86790Y.

[15] J M Vigoureux, F Bada. Critical size of multi-resonant optical tunnel structures. Application to nonradiative effects[J]. Opt Commun, 1993, 101(5-6): 297-302.

[16] T Hashimoto, H Yamanashi, M Sugawara, et al.. Lithographic characterization of EUVL mask blank defects[C]. SPIE, 2004, 5374: 740-750.

[17] D G Stearns, P B Mirkarimi, E Spiller. Localized defects in multilayer coatings[J]. Thin Solid Films, 2004, 446(1): 37-49.

[18] P Naulleau, K A Goldberg, E H Anderson, et al.. Lithographic characterization of the printability of programmed extreme ultraviolet substrate defects[J]. J Vac Sci Technol B, 2003, 21(4): 1286-1290.

[19] E M Gullikson, E Tejnil, T Liang, et al.. EUVL defect printability at the 32 nm Node[C]. SPIE, 2004, 5374: 791-796.

[20] M Ito, T Ogawa, K Otaki, et al.. Simulation of multilayer defects in extreme ultraviolet masks[J]. Jpn J Appl Phys, 2001, 40(4R): 2549-2553.

[21] T Fühner, T Schnattinger, G Ardelean, et al.. Dr.LiTHO – a development and research lithography simulator[C]. SPIE, 2007, 6520: 65203F.

[22] 曹宇婷, 王向朝, 邱自成, 等. 极紫外投影光刻掩模衍射简化模型的研究[J]. 光学学报, 2011, 31(4): 0405001.

    Cao Yuting, Wang Xiangzhao, Qiu Zicheng, et al.. Simplified model for mask diffraction in extreme-ultraviolet projection lithography[J]. Acta Optica Sinica, 2011, 31(4): 0405001.

[23] 曹宇婷, 王向朝, 步扬, 等. 极紫外投影光刻掩模阴影效应分析[J]. 光学学报, 2012, 32(8): 0805001.

    Cao Yuting, Wang Xiangzhao, Bu Yang, et al.. Analysis of mask shadowing effects in extreme-ultraviolet lithography[J]. Acta Optica Sinica, 2012, 32(8): 0805001.

刘晓雷, 李思坤, 王向朝. 基于等效膜层法的极紫外光刻含缺陷掩模多层膜仿真模型[J]. 光学学报, 2015, 35(6): 0622005. Liu Xiaolei, Li Sikun, Wang Xiangzhao. Simulation Model Based on Equivalent Layer Method for Defective Mask Multilayer in Extremeultra violet Lithography[J]. Acta Optica Sinica, 2015, 35(6): 0622005.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!