光学 精密工程, 2018, 26 (9): 2139, 网络出版: 2018-12-16   

基于双目立体视觉的工业机器人在线温度补偿

In-line thermal compensation of industrial robots based on binocular stereo vision
作者单位
天津大学 精密测试技术及仪器国家重点实验室, 天津 300072
摘要
工业机器人在工业现场进行连续高速作业过程中, 电机发热和关节摩擦生热将导致机械臂本体温度升高, 引起机器人末端定位漂移, 严重影响机器人的重复定位精度和作业精度。针对制造现场的工业机器人, 提出了一种基于双目立体视觉的温度误差在线补偿方法, 并基于微分运动学和双目视觉原理构建了温度误差补偿模型。在机器人末端安装基准球, 同时在基座附近固定视觉测量传感器, 机器人完成作业循环之后, 以不同的姿态带动基准球至传感器视场内进行补偿测量。此外, 通过分析各关节参数随时间变化的规律, 筛选出符合温度漂移规律的显著性参数进行补偿, 有效降低了补偿测量次数和耗时。实验结果显示, 补偿后机器人的重复定位精度可维持在±0.1 mm的水平, 能够显著改善制造现场工业机器人的作业精度, 且整个补偿测量过程耗时10 s左右。
Abstract
When an industrial robot is operational continuously at a high speed, the heating of the motor and joint friction heat will result in a higher temperature in the manipulator; furthermore, the position of the end flange will drift and significantly influence the robots repeatability and accuracy. To deal with these problems, in this paper, an in-line thermal compensation method based on binocular stereo vision was presented for an industrial robot working in the manufacturing field. A thermal compensation model was established based on the principles of differential kinematics and vision measurement method. In this method, a standard sphere was installed at the end of the robot arm and a vision sensor was installed around the base of the robot. After working in a regular circulation, the robot carried the standard sphere to the working field of the vision sensor to be measured from different postures. Besides, significant parameters were chosen to compensate for the thermal error from all joint parameters after analyzing their time-varying patterns. With fewer parameters that correspond to the thermo-drifting pattern, the measuring times and time consumption could be effectively reduced. The experimental result demonstrates that the proposed in-line thermal error compensation method can maintain the repeatability of the robot within ±0.1 mm and the compensation time is approximately 10 s, which can noticeably improve the operating precision of the industrial robot at the manufacturing site.
参考文献

[1] HA I C. Kinematic parameter calibration method for industrial robot manipulator using the relative position [J]. Journal of Mechanical Science and Technology, 2008, 22(6): 1084.

[2] BAI Y. On the comparison of model-based and modeless robotic calibration based on a fuzzy interpolation method [J]. The International Journal of Advanced Manufacturing Technology, 2007, 31(11): 1243-1250.

[3] GATTI G, DANIELI G. A practical approach to compensate for geometric errors in measuring arms: application to a six-degree-of-freedom kinematic structure[J]. Measurement Science & Technology, 2007, 19(1): 015107.

[4] DENAVIT J, HARTENBERG R S. A kinematic notation for lower-pair mechanisms based on matrices [J]. Trans.of the Asme.Journal of Applied Mechanics, 1955, 22: 215-221.

[5] 戚祯祥, 叶超强, 吴建华, 等. 基于MDH模型的工业机器人标定算法与实验研究[J]. 制造业自动化, 2015(4): 15-17.

    QI Z X, YE C Q, WU J H, et al.. Research on the algorithm and experiment of robot calibration based on MDH model [J]. Manufacturing Automation, 2015(4): 15-17. (in Chinese)

[6] 尹仕斌. 工业机器人定位误差分级补偿与精度维护方法研究[D]. 天津: 天津大学, 2015.

    YIN S B. Research on the Graded Calibration and Accuracy Maintenance Technique for Industrial Robot [D]. Tianjin: Tianjin University, 2015. (in Chinese)

[7] BUSCHHAUS A, GRIINSTEUDEL H, FRANKE J. Geometry-based 6D-pose visual servoing system enabling accuracy improvements of industrial robots[C]. Advanced Mechatronic Systems (ICAMechS), 2016 International Conference on, IEEE, 2016: 195-200.

[8] GONG C, YUAN J, NI J. Nongeometric error identification and compensation for robotic system by inverse calibration [J]. International Journal of Machine Tools & Manufacture, 2000, 40(14): 2119-2137.

[9] 王一, 任永杰, 邾继贵, 等. 测量机器人在线动态温度误差补偿技术[J]. 光电子·激光, 2009(4): 70-73.

    WANG Y, REN Y J, ZHU J G, et al.. On-line and dynamic thermal error compensation for Measuring robot [J]. Journal of Optoelectronics·Laser, 2009(4): 70-73. (in Chinese)

[10] 李睿, 赵阳. 机器人热影响模型分析及动态精度补偿[J].红外与激光工程, 2015, 44(8): 2382-2388.

    LI R, ZHAO Y. Thermal effect model analysis and dynamic error compensation of industrial robot [J]. Infrared and Laser Engineering, 2015, 44(8): 2382-2388. (in Chinese)

[11] 蔡自兴, 谢斌. 机器人学.第3版[M]. 北京: 清华大学出版社, 2015.

    CAI Z X.Robotics. Version 3[M]. Beijing: Tsinghua University Press, 2015. (in Chinese)

[12] PARK I W, LEE B J, CHO S H, et al.. Laser-based kinematic calibration of robot manipulator using differential kinematics [J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6): 1059-1067.

[13] NUBIOLA A.Calibration of a Serial, Robot Using a Laser Tracker[M]. LAP LAMBERT Academic Publishing, 2011.

[14] YIN S, GUO Y, REN Y, et al.. Real-time thermal error compensation method for robotic visual inspection system [J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(5): 933-946.

[15] WU B, ZHANG Y. Reference sphere positioning measurement based on line-structured light vision sensor [J]. Advances in Mechanical Engineering, 2013: 533-542.

[16] 杨守瑞, 尹仕斌, 任永杰, 等. 机器人柔性视觉测量系统标定方法的改进[J]. 光学 精密工程, 2014, 22(12): 3239-3246.

    YANG SH R, YIN SH B, REN Y J, et al.. Improvement of calibration method for robotic flexible visual measurement systems [J]. Opt. Precision Eng., 2014, 22(12): 3239-3246. (in Chinese)

[17] 韩延祥, 张志胜, 戴敏. 用于目标测距的单目视觉测量方法[J]. 光学 精密工程, 2011, 19(5): 1110-1117.

    HAN Y X, ZHANG ZH SH, DAI M. Monocular vision system for distance measurement based on feature points [J]. Opt. Precision Eng., 2011, 19(5): 1110-1117. (in Chinese)

[18] 周平, 朱统晶, 刘欣冉, 等. 结构光测量中相位误差的过补偿与欠补偿校正[J].光学 精密工程, 2015, 23(1): 56-62.

    ZHOU P, ZHU T J, LIU X R, et al.. Correction of phase error over compensation and under-compensation in structured light measurement [J]. Opt. Precision Eng., 2015, 23(1): 56-62.(in Chinese)

[19] DE SMET P. Method for calibration of a robot inspection system: US, US6321137[P]. 2001.

[20] LI W L, XIE H, ZHANG G, et al.. Hand-eye calibration in visually-guided robot grinding[J]. IEEE Transactions on Cybernetics, 2015, 46(11): 2634-2642.

邾继贵, 张楠楠, 任永杰, 尹仕斌, 郭寅, 郭思阳. 基于双目立体视觉的工业机器人在线温度补偿[J]. 光学 精密工程, 2018, 26(9): 2139. ZHU Ji-gui, ZHANG Nan-nan, REN Yong-jie, YIN Shi-bin, GUO Yin, GUO Si-yang. In-line thermal compensation of industrial robots based on binocular stereo vision[J]. Optics and Precision Engineering, 2018, 26(9): 2139.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!