强激光与粒子束, 2010, 22 (12): 3025, 网络出版: 2011-01-05  

斜入射脉冲X射线产生电流实验

Experimental investigation on currents produced by obliquely incident X rays
作者单位
中国工程物理研究院 流体物理研究所, 四川 绵阳 621900
摘要
针对斜入射脉冲X射线与金属的几种可能相互作用机制, 设计了实验布局, 测量了斜入射X射线在金属靶上产生的脉冲电流, 建立了相应的理论模型。结果显示, 当X射线入射强度低于105 W/cm2时, 以光电效应为主,高于此值时, 以热电效应为主导。这表明, X射线加载强度较弱时, 电子表现出个体行为,而增大X射线入射强度, 电子表现出弱关联集体行为。由此可以预测, 超强X射线辐照下, 金属表面将出现宏观尺度的电荷密度调制, 在退激发过程中, 这种调制状态可能以较高的效率辐射定向的微波电磁脉冲。
Abstract
Experimental setup was designed to distinguish photoelectric effect, thermoelectric effect and Compton effect in X rays and metal interaction. Measurements of currents in metals irradiated by obliquely incident X rays produced by X pinch show that photoelectric effect will dominate the interaction process when the X ray intensity is lower than 105 W/cm2, and thermoelectric effect will dominate when the intensity is higher. Electrons irradiated by weak X rays show individual behavior, while they show weak correlated collective behavior with increasing intensity. Thus it is reasonable to predict that macroscopic charge density modulation will appear on metal surface irradiated by ultra-intense X rays, and directed electromagnetic pulses will be produced during the de-excitation of such state.
参考文献

[1] 陈明, 程引会, 吴伟, 等. 80C196KC单片机电磁脉冲效应模拟实验研究[J]. 核电子学与探测技术, 2006, 26(3):364-366.(Chen Ming, Cheng Yinhui, Wu Wei, et al. Experimental study of EMP effects on 80C196KC microcontrollers.Nuclear Electronics and Detection Technology,2006,26(3):364-366)

[2] 程引会, 周辉, 李宝忠, 等. 带负载导线的电磁脉冲响应数值模拟方法研究[J]. 电波科学学报, 2005, 20(4):513-516.(Cheng Yinhui, Zhou Hui, Li Baozhong, et al. Numerical simulation of EMP coupling to loaded thin wire.Chinese Journal of Radio Science,2005,20(4):513-516)

[3] 柴玫, 闫玉波, 葛德彪. 电磁脉冲斜入射时无限长近地细导线表面电流的计算[J]. 微波学报, 2001, 17(3):12-16.(Chai Mei, Yan Yubo, Ge Debiao. Computation of surface current on an infinite thin wire near ground induced by an oblique incidence of EMP.Journal of Microwaves,2001,17(3):12-16)

[4] Pearlman J S, Dahlbacka G H. Charge separation and target voltages in laser-produced plasmas[J].Appl Phys Lett,1977,31(7):414-417.

[5] Hauer A, Mason R J. Return current heating and implosion of cylindrical CO2-laser-driven targets[J].Phys Rev Lett,1983,51(6):459-462.

[6] Beg F N, Clark E L, Wei M S, et al. High-intensity-laser-driven Z pinches[J].Phys Rev Lett,2004,92:095001.

[7] Drouet M G, Bolton R. Distribution of self-generated current in laser-produced plasmas[J].Phys Rev Lett,1976,36(11):591-594.

[8] R S Case Jr, Schwirzke F. Background gas pressure dependence and spatial variation of spontaneously generated magnetic fields in laser-produced plasmas[J].J Appl Phys,1975,46(4):1493-1498.

[9] Stamper J A, Papadopoulos K, Sudan R N, et al. Spontaneous magnetic fields in laser-produced plasmas[J].Phys Rev Lett,1971,26(17):1012-1015.

[10] Thomson J J, Max C E, Estabrook K. Magnetic fields due to resonance absorption of laser light[J].Phys Rev Lett,1975,35(10):663-667.

[11] Tommasini R, Fill E E, Bruch R, et al. Generation of monoenergetic ultrashort electron pulses from a fs laser plasma[J].Appl Phys B,2004,79:923-926.

[12] Xu Miaohua, Li Yutong, Yuan Xiaohui, et al. Generation of surface electrons in femtosecond laser-solid interactions[J].Science in China: Series G. 2006,49(3):335-340.

[13] Li Yutong, Yuan Xiaohui, Xu Miaohua, et al. Observation of a fast electron beam emitted along the surface of a target irradiated by intense femtosecond laser pulses[J].Phys Rev Lett,2006,96:165003.

[14] Carron N J, Longmire C L. Electromagnetic pulse produced by obliquely incident X rays[J].IEEE Trans on Nucl Sci,1976,23(6):1897-1902.

[15] Bessarab A V, Gorbunov A A, Martynenko S P. Faster-than-light EMP source initiated by shot X-ray pulse of laser plasma[J].IEEE Trans on Plasma Science,2004,32(3):1400-1403.

[16] Bessarab A V, Martynenko S P, Prudkoi N A. Experimental study of electromagnetic radiation from a faster-than-light vacuum macroscopic source[J].Radiation Physics and Chemistry,2006,75:825-831.

[17] Lazarev Y N, Petrov P V, Syrtsova Y G. Photoemission pulsed source of wide-band directional electromagnetic radiation[J].Technical Physics,2004,49(11):1477-1485.

[18] Bessarab A V, Garanin S G, Martynenko S P, et al. An ultrawideband electromagnetic pulse transmitter initiated by a picosecond laser[J].Doklady Physics,2006,51(12):651-654.

[19] Lazarev Yu N, Petrov P V. Generation of an intense, directed, ultrashort electromagnetic pulse[C]//Proc of SPIE.1995,2557:512-515.

[20] Lazarev Yu N, Petrov P V, Syrtsova Yu G. Microwave generation by a superluminal source at limiting current densities[J].Plasma Physics Reports,2003,29(6): 491-502.

[21] 王立君, 周辉, 程引会, 等. 利用DPF模拟SGEMP效应的数值计算结果分析[J]. 核电子学与探测技术, 1999, 19(1):47-50.(Wang Lijun, Zhou Hui, Cheng Yinhui, et al. Analysis on numerical compute results of SGEMP effects simulation with DPF.Nuclear Electronics and Detection Technology,1999,19(1):47-50)

[22] Henke B L, Gullikson E M, Davis J C. X-ray interactions: Photoabsorption, scattering, transmission and reflection at E=50~30 000 eV, Z=1~92[EB/OL].http://www-cxro.lbl.gov/.

[23] Benjamin R F, McCall G H, Ehler A W. Measurement of return current in a laser-produced plasma[J].Phys Rev Lett,1979,42(14):890-893.

[24] Feynman R P. Feynman’s lectures on physics[M]. Volume Ⅱ.Beijing: World Press, 2004.

但加坤, 李剑峰, 黄显宾, 杨礼兵, 张思群, 欧阳凯, 李军, 段书超. 斜入射脉冲X射线产生电流实验[J]. 强激光与粒子束, 2010, 22(12): 3025. Dan Jiakun, Li Jianfeng, Huang Xianbin, Yang Libing, Zhang Siqun, Ouyang Kai, Li Jun, Duan Shuchao. Experimental investigation on currents produced by obliquely incident X rays[J]. High Power Laser and Particle Beams, 2010, 22(12): 3025.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!