光学 精密工程, 2014, 22 (11): 2959, 网络出版: 2014-12-08   

光学石英玻璃纳米级加工性能

Nano-processing performance of optical glass
作者单位
大连理工大学 精密与特种加工教育部重点实验室, 辽宁 大连 116021
摘要
提出了一种石英玻璃仿真模型的构建方法, 并应用分子动力学(MD)仿真结合纳米压痕实验对石英玻璃进行了纳米级加工性能的研究。通过计算石英玻璃模型的密度和纳米硬度, 验证了模型的准确性。对石英玻璃进行了纳米压痕实验, 得到了压痕曲线并观察了纳米压痕形貌。最后, 对纳米级压痕过程进行了仿真, 通过计算配位数研究了损伤层的形成及扩展机理。计算得到的石英玻璃模型的纳米硬度约为9.7~10.7 GPa, 密度约为2.28 g/cm3, 与实际测量结果基本一致。仿真结果表明: 石英玻璃有着稳定的塑性变形和少量的弹性变形, 且存在压痕的尺寸效应。当压头压下时会形成大量的原子稠密区, 失去原来共价键的强度, 形成损伤层;而表面形貌主要是由于压头向两侧挤压原子和压头的黏附作用形成的。仿真和实验结果都表明石英玻璃比较适合超精密加工。
Abstract
A method for constructing the models of quartz glass was proposed to improve the processability of quartz glass, and Molecular Dynamics(MD) simulation combined with nano-indentation experiments were performed to research on nano-processing performance of the quartz glass. The accuracy of the model was verified by calculating the density and hardness of the quartz glass. Then the nano-indentation experiment was conducted to obtain indentation curves and to observe the morphology of indentation. Finally, a MD simulation of nano-indentation was performed and the formation and extending mechanism of a damage layer was investigated. According to the calculation of density and nano-hardness, it shows that the density is about 2.28 g/cm3 and nano-hardness is about 9.7—10.7 GPa, which is almost consistent with the experimental results. The experiments indicate that the quartz glass has a stable plastic deformation and a small amount of elastic deformation as well as the indentation size effect. When the indenter is depressed, the atomic dense area is formed. Since it losses the strength of the original covalent bonds, so the damaged layer is formed. Moreover, the surface topography is mainly formed by atoms on both sides squeezed with the indenter and the adhesion of the indenter. The simulation and experimental results show that the quartz glass is suitable for ultra-precision machining.
参考文献

[1] 黄坤涛, 房丰洲, 宫虎. 超精密车削表面微观形貌对光学特性的影响[J]. 光学精密工程, 2013, 21(1): 102-106.

    HUANG K R, FANG F ZH, GONG H. Effect of sursafe microscopic topology generated by ultra-precision turning on optical characteristics [J]. Opt. Precision Eng., 2013, 21(1): 102-106. (in Chinese)

[2] 袁哲俊, 王先逵.精密和超精密加工技术[M].北京: 机械工业出版社, 2010.

    YUAN ZH J, WANG X K. Precision and Ultra Precision Machining [M]. Beijing: China Machine Press, 2010. ( in Chinese)

[3] 黑沫, 鲁亚飞, 张智永, 等. 基于动力学模型的快速反射镜设计[J]. 光学精密工程, 2013, 21(1): 54-60.

    HEI M, LU Y F, ZHANG ZH Y, et al.. Design of fast steering mirror based on dynamics model [J]. Opt. Precision Eng., 2013, 21(1): 54-60. (in Chinese)

[4] C.基泰尔. 固体物理导论[M]. 北京: 化学工业出版社, 2011.

    KITTEL C. Introduction to Solid State Physics[M]. Beijing: Chemical Industry Press, 2011. (in Chinese)

[5] TANATA H, SHIMADA S, HIGUCHI M, et al.. Mechanism of cutting edge chipping and Its suppression in diamond turning of copper [J]. Annals of the CIRP, 2005, 54(1): 51-54.

[6] TANATA H, SHIMADA S, ANTHONY L. Requirements for ductile-mold machining based on deformation analysis of mono-crystalline silicon by molecular dynamic simulation[J]. Annals of the CIRP, 2007, 56(1): 53-56.

[7] OLIVER WC, PHARR GM. An improved technique for detennining hardness and elastic modulususing load and dis-placement sensing indentation experiments[J]. J. Master Res., 1992, 7(6):1564-1583.

[8] 戴欣平, 赵萍, 文东辉. 单晶蓝宝石的延性研磨加工[J]. 光学精密工程, 2012, 20(6): 1317-1323.

    DAI X P, ZHAO P, WEN D H. Ductile lapping of single crystal sapphire[J]. Opt. Precision Eng., 2012, 20(6): 1317-1323. (in Chinese)

[9] ZHANG ZH Y, ZHANG X ZH, GUO X G, et al.. Hardening mechanism of twin boundaries during nanoindentation of soft-brittle CdTe crystals[J]. Scripta Materialia, 2013, 69:457-460.

[10] LISNYAK V V, DUB S N, STRATIICHUK D A, et al.. Nanoindentation study on viscoelasticity in cesium tungstophosphate glasses[J]. Materials Letters, 2008, 62: 1905-1908.

[11] 宋冬生, 王雷.石英玻璃紫外波段折射率测量[J].应用光学, 2011, 32(6): 706-708.

    SONG D SH, WANG L. Refractive index measurement for quartz glass in ultraviolet band [J]. Journal of Applied Optics, 2011, 32(6): 706-708. (in Chinese)

[12] 叶大年, 李哲, 郝伟. 变质反应中硅氧键总平均值的变化[J].科学通报, 2001, 46(1): 61-63.

    YE D N, LI ZH, HAO W. Changes in the silicon-oxygen bond metamorphic reactions overall average[J]. Chinese Science Bulletin, 2001, 46(1):61-63. (in Chinese)

[13] TERSOFF J. Modeling solid-state chemistry: Interatomic potentionals for multicomponent systems[J]. Physical Review B, 1989, 39(8): 5566-5568.

[14] LI CH, ZHANG L CH. Mechanical behaviour characterisation of silicon and effect of loading rate on pop-in: A nanoindentation study under ultra-low loads[J]. Materials Science and Engineering A, 2009, 506:125-129.

[15] CHANG L, ZHANG L CH. Deformation mechanisms at pop-out in monocrystaline silicon under nanoindention[J]. Acta Material , 2009, 57:2148-2153.

[16] SANGWALK. On the reverse Indentation size effect and microhardness measurement of solids [J].Materials Chemistry and Physics, 2000, 63: 145-152.

郭晓光, 翟昌恒, 张亮, 金洙吉, 郭东明. 光学石英玻璃纳米级加工性能[J]. 光学 精密工程, 2014, 22(11): 2959. GUO Xiao-guang, ZHAI Chang-heng, ZHANG Liang, JIN Zhu-ji, GUO Dong-ming. Nano-processing performance of optical glass[J]. Optics and Precision Engineering, 2014, 22(11): 2959.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!