中国激光, 2021, 48 (2): 0202018, 网络出版: 2021-01-06   

空间整形飞秒激光图案化加工氧化石墨烯 下载: 1743次特邀研究论文

Patterned Graphene Oxide by Spatially-Shaped Femtosecond Laser
作者单位
1 清华大学机械工程系, 北京 100084
2 北京理工大学机械车辆学院, 北京 100081
3 清华大学化学系, 北京 100084
引用该论文

郭恒, 闫剑锋, 李欣, 曲良体. 空间整形飞秒激光图案化加工氧化石墨烯[J]. 中国激光, 2021, 48(2): 0202018.

Heng Guo, Jianfeng Yan, Xin Li, Liangti Qu. Patterned Graphene Oxide by Spatially-Shaped Femtosecond Laser[J]. Chinese Journal of Lasers, 2021, 48(2): 0202018.

参考文献

[1] Novoselov K S, Fal’ko V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.

[2] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.

[3] Chen Z, Ren W, Gao L, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10(6): 424-428.

[4] Yang W, Chen G, Shi Z, et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride[J]. Nature Materials, 2013, 12(9): 792-797.

[5] WeiG. The chemistry of graphene oxide[M] //Graphene oxide. Cham: Springer International Publishing, 2015: 61- 95.

[6] Mkhoyan K A, Contryman A W, Silcox J, et al. Atomic andelectronic structure of graphene-oxide[J]. Nano Letters, 2009, 9(3): 1058-1063.

[7] Pei S F, Cheng H M. The reduction of graphene oxide[J]. Carbon, 2012, 50(9): 3210-3228.

[8] Gilje S, Han S, Wang M S, et al. Achemical route to graphene for device applications[J]. Nano Letters, 2007, 7(11): 3394-3398.

[9] Wei Z, Wang D, Kim S, et al. Nanoscale tunable reduction of graphene oxide for graphene electronics[J]. Science, 2010, 328(5984): 1373-1376.

[10] Wan Z F, Streed E W, Lobino M, et al. Laser-reduced graphene: synthesis, properties, and applications[J]. Advanced Materials Technologies, 2018, 3(4): 1700315.

[11] Arul R, Oosterbeek R N, Robertson J, et al. The mechanism of direct laser writing of graphene features into graphene oxide films involves photoreduction and thermally assisted structural rearrangement[J]. Carbon, 2016, 99: 423-431.

[12] Wan Z F, Wang S J, Haylock B, et al. Tuning the sub-processes in laser reduction of graphene oxide by adjusting the power and scanning speed of laser[J]. Carbon, 2019, 141: 83-91.

[13] Zhang Y L, Guo L, Wei S, et al. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction[J]. Nano Today, 2010, 5(1): 15-20.

[14] Gao W, Singh N, Song L, et al. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films[J]. Nature Nanotechnology, 2011, 6(8): 496-500.

[15] Kurra N, Jiang Q, Nayak P, et al. Laser-derived graphene: a three-dimensional printed graphene electrode and its emerging applications[J]. Nano Today, 2019, 24: 81-102.

[16] 柯伟铭, 李振华, 周智翔, 等. 基于还原氧化石墨烯的干涉型光纤温度传感器[J]. 光学学报, 2019, 39(12): 1206007.

    Ke W M, Li Z H, Zhou Z X, et al. Reduced graphene oxide-based interferometric fiber-optic humidity sensor[J]. Acta Optica Sinica, 2019, 39(12): 1206007.

[17] Ni J, Wang C, Zhang C, et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material[J]. Light: Science & Applications, 2017, 6(7): e17011.

[18] Wang C, Yang L, Hu Y, et al. Femtosecond Mathieu beams for rapid controllable fabrication of complex microcages and application in trapping microobjects[J]. ACS Nano, 2019, 13(4): 4667-4676.

[19] Wang A D, Jiang L, Li X W, et al. Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses[J]. Advanced Materials, 2015, 27(40): 6238-6243.

[20] Kuchmizhak A A, Porfirev A P, Syubaev S A, et al. Multi-beam pulsed-laser patterning of plasmonic films using broadband diffractive optical elements[J]. Optics Letters, 2017, 42(14): 2838-2841.

[21] Cheng J, Gu C, Zhang D, et al. High-speed femtosecond laser beam shaping based on binary holography using a digital micromirror device[J]. Optics Letters, 2015, 40(21): 4875-4878.

[22] 刘思垣, 张静宇. 基于空间光调制器的超快激光加工原理及应用[J]. 激光与光电子学进展, 2020, 57(11): 111431.

    Liu S Y, Zhang J Y. Principles and applications of ultrafast laser processing based on spatial light modulators[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111431.

[23] 吴培超, 张晨初, 杨亮, 等. 基于空间光调制器的飞秒激光双模式快速加工[J]. 中国激光, 2018, 45(10): 1001005.

    Wu P C, Zhang C C, Yang L, et al. Femtosecond laser dual-mode rapid fabrication based on spatial light modulator[J]. Chinese Journal of Lasers, 2018, 45(10): 1001005.

[24] Li B H, Jiang L, Li X W, et al. Flexible gray-scale surface patterning through spatiotemporal-interference-based femtosecond laser shaping[J]. Advanced Optical Materials, 2018, 6(24): 1801021.

[25] Zhang C C, Hu Y L, Du W Q, et al. Optimized holographic femtosecond laser patterning method towards rapid integration of high-quality functional devices in microchannels[J]. Scientific Reports, 2016, 6(1): 33281.

[26] Cheng H H, Liu J, Zhao Y, et al. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots[J]. Angewandte Chemie, 2013, 125(40): 10676-10680.

[27] Yeh T F, Syu J M, Cheng C, et al. Graphite oxide as a photocatalyst for hydrogen production from water[J]. Advanced Functional Materials, 2010, 20(14): 2255-2262.

郭恒, 闫剑锋, 李欣, 曲良体. 空间整形飞秒激光图案化加工氧化石墨烯[J]. 中国激光, 2021, 48(2): 0202018. Heng Guo, Jianfeng Yan, Xin Li, Liangti Qu. Patterned Graphene Oxide by Spatially-Shaped Femtosecond Laser[J]. Chinese Journal of Lasers, 2021, 48(2): 0202018.

本文已被 7 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!