光子学报, 2016, 45 (7): 070731002, 网络出版: 2016-08-18  

局域共振单元与薄膜复合声子晶体板结构的低频降噪

Reduction of Low-frequency Noise in Phononic Crystal Plates with Composite Locally Resonant Structures and Thin Membrane
作者单位
1 空军工程大学 航空航天工程学院, 西安 710038
2 空军工程大学 理学院, 西安 710051
摘要
提出了一种局域共振单元复合声子晶体板结构, 并结合有限元对晶体板结构的带隙特性、隔声性能进行了分析.结果表明, 共振带隙的产生是由共振单元与板中传播的弹性波相互耦合造成的, 耦合强度直接影响共振频率和带隙宽度, 隔声效果与薄膜的厚度直接相关.通过改变薄膜的厚度可以将隔声效果调节到满足机舱飞行员正常驾驶的要求.该结构在200 dB以下具有良好的隔振效果, 最大隔声量达到150 dB.该研究为获得良好的隔声效果提供了理论支持, 在航空发动机减振降噪方面具有潜在的应用前景.
Abstract
A kind of locally resonant phononic crystal plate with composite unite was introduced, and the band gap characteristics and sound transmission loss of the proposed structure were investigated with the finite element methods. It is found that the interaction between the local resonances and the traveling wave modes in the plate results the locally resonant band gap, whose bandwidth and sound insulation effect depend on the interaction strength and the thickness of thin membrane by changing structure parameters. By changing the thickness of the thin membrane, the proposed phononic crystal structure is demonstrated to meet the normal flight. The results show that the structures possess sound insulation effect below 200 dB and highest sound transmission loss up to 150 dB. The study provides a theoretical basis to obtain good sound insulation effect, and has a potential application value in the reducing of noise and vibration in the aero-engine.
参考文献

[1] 邓吉宏, 王柯, 陈国平, 等. 金属橡胶减振器用于发动机安装减振的研究[J]. 航空学报, 2008,29(6): 1581-1585.

    DENG Ji-hong, WANG Ke, CHEN Guo- ping, et al. Study on effect of engine installation metal rubber damper[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1581-1585.

[2] 裘进浩, 袁明, 季宏丽,等. 大型飞机舱内振动噪声主动控制技术的研究及应用[R]. 南京:南京航空航天大学, 2010.

    QIU Jin-hao, YUAN Ming, JI Hong-li, et al. Research and application of vibration noise control technology in large aircraft cabin[R]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.

[3] LAI Y, WU Y, SHENG P, et al. Hybrid elastic solids[J]. Nature Materials, 2011, 10: 620-624.

[4] MALDOVAN M. Sound and heat revolutions in phononics[J]. Nature, 2013, 503: 209-217.

[5] 温熙森, 温激鸿, 郁殿龙, 等. 声子晶体[M]. 北京: 国防工业出版社, 2009.

[6] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736.

[7] MEI J, MA G, YANG M, et al. Dark acoustic metamaterials as super absorbers for low-freqeuncy sound[J]. Nature Communications, 2012, 3: 756-762.

[8] YANG Z, DAI H M, CHAN N H, et al. Acoustic metamaterial panels for sound attenuation in the 50-1000 Hz regime[J]. Applied Physics Letters. 2010, 96(4): 041906-041910.

[9] YANG Z, MEI J, YANG M, et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Physical Review Letters, 2008, 101(20): 204301-204305.

[10] 张玉光, 温激鸿, 肖勇, 等. 基于有限元法的周期拱形结构振动特性[J]. 机械工程学报, 2011,47(21):064-068.

    ZHANG Yu-gang, WEN Ji-hong, WANG Gang, et al. Vibration property of periodic arch structure based on finite element methed[J]. Journal of Mechanical Engineering, 2011, 47(21): 064-068.

[11] 康玉成. 实用建筑吸声设计技术[M]. 北京:中国建筑工业出版社, 2007, 163-168.

[12] 肖勇, 温熙森. 局域共振型结构的带隙调控与减振降噪特性研究[D]: 长沙:国防科学技术大学,2012.

    XIAO Yong, WEN Xi-sen. Locally resonant structures: Band gap tunin and properties of vibration and noise reduction[D]. Changsha: National University of Defense Technology, 2012.

[13] ZHU R, HUANG H H. Microstructure continuum modeling of an elastic metamaterial[J]. International Journal of Engineering Science, 2011, 49(12): 1477-1485.

[14] XING Chen, XIAN Chen-xu, SHI Gang-ai, et al. Active acoustic metamaterials with tunable effective mass density by gradient magnetic fields[J]. Applied Physics Letters, 2014, 105(7): 071913-071919.

[15] HO K M, CHENG K, YANG Z, et al. Broadband locally resonant sonic shields[J]. Applied Physics Letters, 2003, 83(26):5566-5568.

[16] 吴九汇, 张思文, 沈礼,等. 螺旋局域共振单元声子晶体板结构振动带隙特性研究[J]. 机械工程学报,213,49(10):62-69.

    WU Jiu-hui, ZHANG Si-wen, SHEN Li, et al. Low-frequency vibration characteristics of periodic spiral resonators in phononic crystal plates[J]. Journal of Mechanical Engineering, 2013, 49(10): 62-69.

[17] LAI Y, WU Y, SHENG P, et al. Hybrid elastic solids[J]. Nature Materials, 2011, 10(8):620-624.

[18] MEI J, MA G, YANG M, et al. Dark acoustic metamaterials as super absorbers for low-frequency sound[J]. Nature Communications, 2012, 3(3):756-762.

[19] 温熙森, 温激鸿, 王刚, 刘耀宗, 韩小云等著. 声子晶体[M].北京:国防工业出版社, 2009.

[20] HSU J C. Local resonances-induced low-frequency band gaps in two-dimensional phononic crystal slabs with periodic stepped resonators[J]. Journal of Physics D, 2011, 44(5):05540-05546.

张佳龙, 姚宏, 杜军, 姜久龙, 董亚科, 祁鹏山. 局域共振单元与薄膜复合声子晶体板结构的低频降噪[J]. 光子学报, 2016, 45(7): 070731002. ZHANG Jia-long, YAO Hong, DU Jun, JIANG Jiu-long, DONG Ya-ke, QI Peng-shan. Reduction of Low-frequency Noise in Phononic Crystal Plates with Composite Locally Resonant Structures and Thin Membrane[J]. ACTA PHOTONICA SINICA, 2016, 45(7): 070731002.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!