红外与毫米波学报, 2017, 36 (6): 756, 网络出版: 2018-01-04  

基于反射差分显微术的有机薄膜空间均一性研究

Spatial uniformity of organic thin films based on reflectance difference microscopy
作者单位
1 天津大学 精密测试技术及仪器国家重点实验室, 天津 300072
2 成都工业学院 机械工程学院, 四川 成都 611730
摘要
有机薄膜半导体器件在微电子和光电子领域具有重要的研究与应用价值, 其成膜质量是影响器件性能的重要因素, 如空间分布的均一性.采用反射差分显微测量方法, 对各向异性基底上生长的并五苯薄膜的反射差分显微图像进行分析, 研究了该薄膜参数空间分布的非均一性, 同时展示了反射差分显微术在薄膜制备检测及工艺研究的应用价值.
Abstract
Organic thin-film semiconductor devices have important applications in the fields of microelectronics and optoelectronics. The film quality is one of the key factors affecting the device performance such as the uniformity of film spatial distribution. This parameter was studied by analyzing the reflectance difference maps of pentacene thin film grown on an anisotropic substrate which were measured by reflectance difference microscopy.
参考文献

[1] Mazzio K A, Luscombe C K. The future of organic photovoltaics[J]. Chem Soc Rev, 2015, 44(1):78-90.

[2] Yang X, Xu X, Zhou G. Recent advances of the emitters for high performance deep-blue organic light-emitting diodes[J]. J. Mater. Chem. C, 2015, 3(5):913-944.

[3] Yi Z, Wang S, Liu Y. Design of high-mobility Diketopyrrolopyrrole-based pi-conjugated copolymers for organic thin-film transistors[J]. Adv Mater, 2015, 27(24):3589-606.

[4] Wang C, Zhang J, Long G, et al. Synthesis, structure, and air-stable N-type field-effect transistor behaviors of functionalized octaazanonacene-8,19-dione[J]. Angew Chem Int Ed Engl, 2015, 54(21):6292-6.

[5] Kumar B, Kaushik B K, Negi Y S. Organic thin film transistors: Structures, models, materials, fabrication, and applications: A review[J]. Polymer Reviews, 2014, 54(1):33-111.

[6] Eslamian M. Inorganic and organic solution-processed thin film devices[J]. Nano-Micro Letters, 2016, 9(1).

[7] Huang Y, Li H, Wang Z, et al. Nanostructured polypyrrole as a flexible electrode material of supercapacitor[J]. Nano Energy, 2016, 22:422-438.

[8] Cheng T, Zhang Y, Lai W Y, et al. Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability[J]. Adv Mater, 2015, 27(22):3349-76.

[9] Walia S, Shan C M, Gutruf P, et al. Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro-and nano-scales[J]. Applied Physics Reviews, 2015, 2(1):011303.

[10] Weightman P, Martin D S, Cole R J, et al. Reflection anisotropy spectroscopy[J]. Reports on Progress in Physics, 2005, 68(6):1251-1341.

[11] Zhang L, Liu C Y, Fu X, et al. Pentacene/Cu(110) interface formation monitored by in situ optical spectroscopy[J]. Physical Review B, 2014, 89(3).

[12] Supplie O, May M M, Steinbach G, et al. Time-resolved in situ spectroscopy during formation of the GaP/Si(100) heterointerface[J]. J Phys Chem Lett, 2015, 6(3):464-9.

[13] Hospodkova A, Pangrac J, Vyskocil J, et al. Growth of InAs/GaAs quantum dots covered by GaAsSb in multiple structures studied by reflectance anisotropy spectroscopy[J]. Journal of Crystal Growth, 2015, 414:156-160.

[14] Hohage M, Sun L D, Zeppenfeld P. Reflectance difference spectroscopy—a powerful tool to study adsorption and growth[J]. Applied Physics A, 2005, 80(5):1005-1010.

[15] Goletti C, Bussetti G, Chiaradia P, et al. Highly sensitive optical monitoring of molecular film growth by organic molecular beam deposition[J]. Applied Physics Letters, 2003, 83(20):4146.

[16] Sun L D, Hohage M, Zeppenfeld P. Oxygen-induced reconstructions of Cu(110) studied by reflectance difference spectroscopy[J]. Physical Review B, 2004, 69(4).

[17] HUO Shu-Chun, HU Chun-Guang, SHEN Wan-Fu, et al. Photoelectric characterization of liquid crystal variable retarder using single polarizer[J]. Journal of Infrared and Millimeter Waves(霍树春, 胡春光, 沈万福,等. 基于单偏振器的液晶相位延迟器光电特性. 红外与毫米波学报), 2016, 35(1):68-71+77.

[18] Hu C G, Sun L D, Flores-Camacho J M, et al. A rotating-compensator based reflectance difference spectrometer for fast spectroscopic measurements[J]. Review of Scientific Instruments, 2010, 81(4):043108.

[19] Koopmans B, Santos P V, Cardona M. Microscopic reflection difference spectroscopy on semiconductor nanostructures[J]. Physica Status Solidi (a), 1998, 170(2):307-315.

[20] Huo S, Hu C, Shen W, et al. Normal-incidence reflectance difference spectroscopy based on a liquid crystal variable retarder[J]. Applied Optics, 2016, 55(33):9334.

[21] Acher O, Drévillon B. A reflectance anisotropy spectrometer for real-time measurements[J]. Review of Scientific Instruments, 1992, 63(11):5332-5339.

[22] Azzam R M, Bashara N M. Ellipsometry and polarized light[M]. Amsterdam: North-Holland, 1977.

[23] Kratzer M, Teichert C. Thin film growth of aromatic rod-like molecules on graphene[J]. Nanotechnology, 2016, 27(29):292001.

[24] Nickel B, Fiebig M, Schiefer S, et al. Pentacene devices: Molecular structure, charge transport and photo response[J]. Physica Status Solidi (a), 2008, 205(3):526-533.

[25] Zhang L, Fu X, Hu C G, et al. Optical and structural properties of the pentacene/quartz (0001) interface[J]. Physical Review B, 2016, 93(7).

[26] Macdonald B F, Law J S, Cole R J. Azimuth-dependent reflection anisotropy spectroscopy[J]. Journal of Applied Physics, 2003, 93(6):3320-3327.

[27] Flores-Camacho J M, Weidlinger G, Sun L D, et al. Growth and optical properties of Ag clusters deposited on poly(ethylene terephthalate)[J]. Nanotechnology, 2011, 22(27):275710.

[28] Martin D S, Zeybek O, Weightman P, et al. Optical reflectance anisotropy of the growth of Fe monolayers on W(110)[J]. Journal of Physics: Condensed Matter, 2011, 23(35):355002.

霍树春, 胡春光, 沈万福, 李艳宁, 胡小唐. 基于反射差分显微术的有机薄膜空间均一性研究[J]. 红外与毫米波学报, 2017, 36(6): 756. HUO Shu-Chun, HU Chun-Guang, SHEN Wan-Fu, LI Yan-Ning, HU Xiao-Tang. Spatial uniformity of organic thin films based on reflectance difference microscopy[J]. Journal of Infrared and Millimeter Waves, 2017, 36(6): 756.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!