激光与光电子学进展, 2012, 49 (1): 013003, 网络出版: 2011-11-09   

应用激光诱导击穿光谱测量水体中痕量重金属锌

Measurement of Trace Heavy Metal Zinc in Water by Laser Induced Breakdown Spectroscopy
作者单位
中国科学院安徽光学精密机械研究所环境光学与技术重点实验室, 安徽 合肥 230031
摘要
利用激光诱导击穿光谱(LIBS)对水体中痕量重金属锌进行定性及定量分析,以1064 nm波长NdYAG脉冲激光为激发光源,采用高分辨率、宽光谱段的中阶梯光栅光谱仪和增强型电荷耦合器件(ICCD)为谱线分离与探测器件,以锌(Zn:481.1 nm)特征谱线作为分析线,测定不同浓度下的特征谱线强度。实验中以固体圆饼状石墨块为样品基体进行元素富集,滴定固定量的已知不同浓度的氯化锌溶液于基体表面固定区域,烘干并制备实验待测样品。结果表明,锌的最佳探测延迟时间为1100 ns,元素谱线强度随着样品浓度的增加而增大并在较低浓度下呈线性关系,得到水体中锌元素的痕量检测限4.108 mg/L。研究结果为进一步开展水体痕量重金属的激光诱导击穿光谱测量提供了方法。
Abstract
Laser-induced breakdown spectroscopy is used in qualitative and quantitative analysis of trace amounts of heavy metals zinc in water, with 1064 nm NdYAG laser as the excitation light source and high resolution, wide spectral range echelle spectrometer and intensified charge-coupled device (ICCD) as the line separating and detecting devices. The characteristic line at 481.1 nm is chosen as the analysis line to measure the characteristic line intensities of different zinc concentrations. A solid state graphite round flat is used as matrix for element enrichment to reduce water splashing, extend the plasma lifetime and improve the detection sensitivity. The experimental sample is prepared by titrating a fixed volume of zinc chloride solution of different concentrations on a fixed area of the graphite matrix. The results show that the optimal detection delay time is about 1100 ns. The spectrum intensity rises with the concentration increasing, and a good linear relationship is found at low concentration region. The lower limit of detection of zinc in water of 4.108 mg/L is obtained. A measurement method for further study of trace heavy metals in water is provided with laser induced breakdown spectroscopy technique.
参考文献

[1] Andrzej W. Miziolek, Vincenzo Palleschi, Israel Schechter. Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006

[2] David A. Cremers, Leon J. Radziemski. Handbook of Laser-Induced Breakdown Spectroscopy [M]. Cambridge: Cambridge University Press, 2006

[3] S. Rosenwasser, G. Asimellis, B. Bromley et al.. Development of a method for automated quantitative analysis of ores using LIBS[J]. Spectrochim. Acta Part B, 2001, 56(6): 707~714

[4] Demetrios Anglos. Laser-induced breakdown spectroscopy in art and archaeology[J]. Appl. Spectrosc., 2001, 55(6): 186A~205A

[5] G. Arca, A. Ciucci, V. Palleschi et al.. Trace element analysis in water by the laser-induced breakdown spectroscopy [J].Appl. Spectrosc., 1997, 51(8): 1102~1105

[6] 张文艳, 林兆祥, 宋述燕 等. 激光击穿光谱检测葡萄糖溶液的实验研究 [J]. 光谱学与光谱分析, 2008, 28(5): 1003~1006

    Zhang Wenyan, Lin Zhaoxiang, Song Shuyan et al.. Experimental study on glucose solution by laser-induced breakdown spectroscopy [J]. Spectroscopy and Spectral Analysis, 2008, 28(5): 1003~1006

[7] L. Dudragne, P. Adam, J. Amouroux. Time-resolved laser-induced breakdown spectroscopy: application for qualitative and quantitative detection of fluorine, chlorine, sulfur, and carbon in air[J]. Appl.Spectrosc., 1998, 52(10): 1321~1327

[8] R. A. Multari, L. E. Foster, D. A. Cremers et al.. Effect of sampling geometry on elemental emission in laser-induced breakdown spectroscopy[J]. Appl. Spectrosc., 1996, 50(12): 1483~1499

[9] 许洪光, 管士成, 傅院霞 等. 土壤中微量重金属元素Pb的激光诱导击穿谱[J]. 中国激光, 2007, 34(4): 577~581

    Xu Hongguang, Guan Shicheng, Fu Yuanxia et al.. Laser induced breakdown spectroscopy of the trace metal element Pb in soil[J]. Chinese J. Lasers, 2007, 34(4): 577~581

[10] S. Kanga, X. Sun, X. Ju et al.. Measurement and calculation of escape peak intensities in synchrotron radiation X-ray fluorescence analysis [J]. Nucl. Instrum. Methods in Phys. Res. B, 2002, 192(4): 365~369

[11] M. Rawat, M. C. Z. Moturi, V. Subramanian. Inventory compilation and distribution of heavy metals in wastewater from small-scale industrial areas of Delhi,India[J]. J. Environ. Monit., 2003, 5(6): 906~912

[12] J. V. Rios-Arana, E. J. Walsh, J. L. Gardea-Torresdey. Assessment of arsenic and heavy metal concentrations in water and sediments of the Rio Grande at El Paso-Juarez metroplex region[J]. Environment International, 2004, 29(7): 957~971

[13] M. Baudelet, J. Yu, M. Bossu et al.. Discrimination of microbiological samples using femtosecond lasr-induced breakdown spectroscopy [J]. Appl. Phys. Lett., 2006, 89(16): 163903

[14] W. T. Y. Mohamed. Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable Echelle spectrometer with ICCD camera[J]. Opt.Laser Technol., 2007, 40(1): 30~38

[15] M. E. McComb, H. D. Gesser. Preparation of polyacry-loamidoxime chelating cloth for the extraction of heavy metals from water[J]. Anal. Chim. Acta, 1997, 341(6): 229~239

[16] K. H. Lee, M. Oshima, S. Motomizu. Inductively coupled plasma mass spectrometric determination of heavy metals in sea-water samples after pre-treatment with a chelating resin disk by an on-line flow injection method[J]. Analyst, 2002, 137(11): 769~774

[17] 《发射光谱分析》编写组. 发射光谱分析 [M]. 北京:冶金工业出版社, 1977

[18] 李娉, 陆继东, 谢承利 等. 水分对激光诱导煤粉等离子体特性的影响[J]. 中国激光, 2009, 36(4): 828~832

    Li Ping, Lu Jidong, Xie Chengli et al.. Influence of moisture on plasma characters of laser-induced pulverized coal[J]. Chinese J.Lasers, 2009, 36(4): 828~832

石焕, 赵南京, 王春龙, 鲁翠萍, 刘立拓, 陈东, 马明俊, 张玉钧, 刘建国, 刘文清. 应用激光诱导击穿光谱测量水体中痕量重金属锌[J]. 激光与光电子学进展, 2012, 49(1): 013003. Shi Huan, Zhao Nanjing, Wang Chunlong, Lu Cuiping, Liu Lituo, Chen Dong, Ma Mingjun, Zhang Yujun, Liu Jianguo, Liu Wenqing. Measurement of Trace Heavy Metal Zinc in Water by Laser Induced Breakdown Spectroscopy[J]. Laser & Optoelectronics Progress, 2012, 49(1): 013003.

本文已被 15 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!