激光与光电子学进展, 2018, 55 (5): 051603, 网络出版: 2018-09-11   

快速热退火对GaAs/AlGaAs量子阱材料结构及发光特性的影响 下载: 1532次

Effect of Rapid Thermal Annealing on Structural and Luminescence Properties of GaAs/AlGaAs Quantum Wells
作者单位
长春理工大学高功率半导体激光国家重点实验室, 吉林 长春 130022
引用该论文

智民, 方铉, 牛守柱, 房丹, 唐吉龙, 王登魁, 王新伟, 王晓华, 魏志鹏. 快速热退火对GaAs/AlGaAs量子阱材料结构及发光特性的影响[J]. 激光与光电子学进展, 2018, 55(5): 051603.

Min Zhi, Xuan Fang, Shouzhu Niu, Dan Fang, Jilong Tang, Dengkui Wang, Xinwei Wang, Xiaohua Wang, Zhipeng Wei. Effect of Rapid Thermal Annealing on Structural and Luminescence Properties of GaAs/AlGaAs Quantum Wells[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051603.

参考文献

[1] Saxena D, Mokkapati S, Parkinson P. et al. Optically pumped room-temperature GaAs nanowire lasers[J]. Nature Photonics, 2013, 7(12): 963-968.

[2] 刘梦涵, 崔碧峰, 何新, 等. 大功率低阈值半导体激光器研究[J]. 中国激光, 2016, 43(5): 0502001.

    Liu M H, Cui B F, He X, et al. Study of high power semiconductor laser with low threshold current[J]. Chinese Journal of Lasers, 2016, 43(5): 0502001.

[3] Xu Z J, Lin S S, Li X Q. et al. Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity[J]. Nano Energy, 2016, 23: 89-96.

[4] Peytavit E, Arscott S, Lippens D. et al. Terahertz frequency difference from vertically integrated low-temperature-grown GaAs photodetector[J]. Applied Physics Letters, 2002, 81(7): 1174-1176.

[5] Han H V, Lin C C, Tsai Y L. et al. A highly efficient hybrid GaAs solar cell based on colloidal-quantum-dot-sensitization[J]. Scientific Reports, 2014, 4: 5734.

[6] Aberg I, Vescovi G, Asoli D. et al. A GaAs nanowire array solar cell with 15.3% efficiency at 1 sun[J]. IEEE Journal of Photovoltaics, 2016, 6(1): 185-190.

[7] 马大燕, 陈诺夫, 陶泉丽, 等. 包含布拉格反射器的空间用GaInP/(In)GaAs/Ge三结太阳电池性能[J]. 光学学报, 2017, 37(11): 1131001.

    Ma D Y, Chen N F, Tao Q L, et al. Performance of space GaInP/(In)GaAs/Ge triple-junction solar cell containing Bragg reflector[J]. Acta Optica Sinica, 2017, 37(11): 1131001.

[8] 周广龙, 徐建明, 陆健, 等. 连续激光对三结GaAs电池的损伤效应[J]. 激光与光电子学进展, 2017, 54(11): 111412.

    Zhou G L, Xu J M, Lu J, et al. Irradiation effect of continuous-wave laser on triple-junction GaAs solar cells[J]. Laser & Optoelectronics Progress, 2017, 54(11): 111412.

[9] Gunapala S D, Bandara S V, Liu J K. et al. 1024×1024 Format pixel co-located simultaneously readable dual-band QWIP focal plane[J]. Infrared Physics & Technology, 2009, 52(6): 395-398.

[10] Gunapala S D, Bandara S V, Liu J K. et al. 640/spl times/512 pixel long-wavelength infrared narrowband, multiband, and broadband QWIP focal plane arrays[J]. IEEE Transactions on Electron Devices, 2003, 50(12): 2353-2360.

[11] Djie H S, Ooi B S, Aimez V. Neutral ion-implantation-induced selective quantum-dot intermixing[J]. Applied Physics Letters, 2005, 87(26): 261102.

[12] Kalousek R, Bartošík M, et al. Fabrication of nanostructures on Si (100) and GaAs (100) by local anodic oxidation[J]. Applied Surface Science, 2006, 253(5): 2373-2378.

[13] Deppe D G, Holonyak N. Jr. Atom diffusion and impurity-induced layer disordering in quantum well III-V semiconductor heterostructures[J]. Journal of Applied Physics, 1988, 64(12): R93-R113.

[14] Marsh J H, Bradshaw S A, Bryce A C. et al. Impurity induced disordering of GaInAs quantum wells with barriers of AlGaInAs or of GaInAsP[J]. Journal of Electronic Materials, 1991, 20(12): 973-978.

[15] Du S C, Fu L, Tan H H. et al. Investigations of impurity-free vacancy disordering in (Al)InGaAs(P)/InGaAs quantum wells[J]. Semiconductor Science and Technology, 2010, 25(5): 055014.

[16] Zhao J, Feng Z C, Wang Y C. et al. Luminescent characteristics of InGaAsP/InP multiple quantum well structures by impurity-free vacancy disordering[J]. Surface and Coatings Technology, 2006, 200(10): 3245-3249.

[17] Sengupta D K, Horton T, Fang W. et al. Redshifting of a bound-to-continuum GaAs/AlGaAs quantum-well infrared photodetector response via laser annealing[J]. Applied Physics Letters, 1997, 70(26): 3573-3575.

[18] Xie K, Wie C R, Varriano J A. et al. Improvement of GaAs/AlGaAs quantum well laser diodes by rapid thermal annealing[J]. Journal of Electronic Materials, 1994, 23(1): 1-6.

[19] Li L H, Pan Z, Xu Y Q. et al. Effects of rapid thermal annealing and SiO2 encapsulation on GaNAs/GaAs single quantum wells grown by plasma-assisted molecular-beam epitaxy[J]. Applied Physics Letters, 2001, 78(17): 2488-2490.

[20] Ni H Q, Niu Z C, Xu X H. et al. High-indium-content InxGa1-xAs/GaAs quantum wells with emission wavelengths above 1.25 μm at room temperature[J]. Applied Physics Letters, 2004, 84(25): 5100-5102.

[21] Levine B F. Quantum-well infrared photodetectors[J]. Journal of Applied Physics, 1993, 74(8): R1-R81.

[22] 程兴奎, 黄柏标, 徐现刚, 等. GaAs/AlGaAs多量子阱结构中的电子干涉[J]. 电子学报, 2001, 29(5): 692-694.

    Cheng X K, Huang B B, Xu X G, et al. Interference of electron in GaAs/AlGaAs multi-quantum well structure[J]. Acta Ectronica Sinica, 2001, 29(5): 692-694.

[23] Roch T, Schrenk W, Anders S. et al. X-ray investigation of interface broadening by rapid thermal processing[J]. The Society for Micro-electronics, 2004: 109-111.

[24] Dawson P, Duggan G, Ralph H I. et al. Free excitons in room-temperature photoluminescence of GaAs-AlxGa1-xAs multiple quantum wells[J]. Physical Review B, 1983, 28(12): 7381-7383.

[25] HarrisonP. Quantum wells, wires and dots: theoretical and computational physics of semiconductor nanostructures[M]. 3rd ed. Chichester: John Wiley & Sons, 2009.

[26] Levine B F, Bethea C G, Shen V O. et al. Tunable long-wavelength detectors using graded barrier quantum wells grown by electron beam source molecular beam epitaxy[J]. Applied Physics Letters, 1990, 57(4): 383-385.

[27] Willardson RK, Beer AC. Semiconductors and semimetals[M]. New York: Academic press, 1977.

[28] 李华, 程兴奎, 周均铭, 等. 掺杂GaAs/Al0.3Ga0.7As 超晶格的光致发光特性分析[J]. 真空电子技术, 2005( 3): 17- 19.

    LiH, Cheng XK, Zhou JM, et al. Photoluminesecence of doped GaAs/ Al0.3Ga0.7As superlattice[J].Vacuum Electronics, 2005( 3): 17- 19.

[29] Li L H, Pan Z, Zhang W. et al. Effects of rapid thermal annealing on the optical properties of GaNxAs1-x/GaAs single quantum well structure grown by molecular beam epitaxy[J]. Journal of Applied Physics, 2000, 87(1): 245-248.

[30] Smith PE. Atomic diffusion and interface electronic structure of III-V heterojunctions and their dependence on epitaxial growth transitions and annealing[D]. Columbus: The Ohio State University, 2007.

[31] 李娜, 陆卫, 李宁, 等. 质子注入和快速退火对GaAs/AlGaAs量子阱红外探测器的影响[J]. 红外与毫米波学报, 2000, 19(1): 25-28.

    Li N, Lu W, Li N, et al. Influence on GaAs/AlGaAs quantum well infrared photodetector of proton implantation and rapid thermal annealing[J]. Journal of Infrared and Millimeter Waves, 2000, 19(1): 25-28.

[32] Sousa M A, Esteves T C, Sedrine N B. et al. Influence of nitrogen implantation and thermal annealing on the optical properties of green emitting InGaN/GaN multiple quantum wells[J]. Scientific Reports, 2015, 5: 09703.

智民, 方铉, 牛守柱, 房丹, 唐吉龙, 王登魁, 王新伟, 王晓华, 魏志鹏. 快速热退火对GaAs/AlGaAs量子阱材料结构及发光特性的影响[J]. 激光与光电子学进展, 2018, 55(5): 051603. Min Zhi, Xuan Fang, Shouzhu Niu, Dan Fang, Jilong Tang, Dengkui Wang, Xinwei Wang, Xiaohua Wang, Zhipeng Wei. Effect of Rapid Thermal Annealing on Structural and Luminescence Properties of GaAs/AlGaAs Quantum Wells[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051603.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!