激光技术, 2016, 40 (1): 25, 网络出版: 2016-03-24   

激光法制备超细纳米金刚石的相变机理

Phase growth mechanism of ultra-fine nano-diamond prepared by nanosecond laser
作者单位
江苏大学 机械工程学院, 镇江 212013
摘要
为了研究激光法制备纳米金刚石的相变机理, 采用纳秒脉冲激光冲击微米级石墨悬浮液, 并做强酸高温氧化提纯处理, 结合X射线衍射、喇曼光谱、高分辨率透射电镜等表征手段以及热力学和动力学分析方法, 对实验结果进行了理论分析和实验验证。合成得到分散均匀、尺寸在4nm~12nm的超细纳米金刚石。结果表明, 纳秒激光辐照下, 石墨是通过固态-气态-液态-固态的形式转变为金刚石结构的; 与毫秒脉冲激光相比, 高功率密度、短脉宽的纳秒激光为金刚石核的生长提供了大的过冷度, 提高了金刚石的形核率和生长速率; 但是纳米金刚石的生长温度范围极小, 冷却过程中石墨结构与金刚石结构同时形核、长大, 引起金刚石颗粒表面的石墨化, 限制了纳米金刚石的生长。
Abstract
In order to study the growth mechanism from graphite to nano-diamond by laser processing, micron graphite suspension was irradiated by nanosecond pulse laser and then was purified by acid high-temperature oxidation. X-ray diffraction, Raman spectroscopy and high-resolution transmission electron microscopy were used in theoretical analysis and experimental verification. The formation mechanism of nano-diamond was analyzed from thermodynamics and kinetics aspects respectively. Ultra-fine nano-diamond with particle size of 4nm~12nm and uniformly dispersion was synthesized. The results show that under the irradiation of nanosecond pulse laser, the transition from graphite to diamond is solid-vapor-liquid-solid phase transformation process. Compared with millisecond pulse laser, nanosecond laser with high intensity and short pulse width can supply larger super-cooling degree for diamond core growth and improve nucleation rate and growth velocity of nano-diamond. However, growth temperature range of nano-diamond is extremely small. Inevitable graphitization on the surface of diamond particles limits the further growth of nano-diamond.
参考文献

[1] SUN J, ZHAI Q, JIANG L, et al. Synthesis of diamond nanocrystals by pulsed-laser irradiation[J]. Diamond & Abrasives Engineering, 2006(5): 24-27(in Chinese).

[2] LEI Y W, SUN J, DU X W, et al. Mechanism of phase transformation of diamond synthesized by laser with low power density[J]. Chinese Journal of Lasers, 2007, 34(2): 295-299(in Chinese).

[3] SUN J, LI J Q, DU X W, et al. Analysis on the particle size of nanodiamond[J]. Experimental Technology and Management, 2007, 24(4): 28-29(in Chinese).

[4] TIAN F, SUN J. Thermodynamics analysis on the formation of nanodiamonds with different sizes induced by differential pulsed laser[J].Chinese Journal of Lasers, 2009, 36(11): 3039-3044(in Chinese).

[5] WANG J B, ZHANG C Y, ZHONG X L, et al. Cubic hexagonal structures of diamond nanocrystals formed upon pulsed laser induced liquid-solid interfacial reaction[J]. Chemical Physical Letters, 2002, 36(1/2): 86-90.

[6] PEARCE S R J, HENLEY S J, CLAEYSSENS F, et al. Production of nnaocrystalline diamond by laser ablation at the solid/liquid interface[J]. Diamond Related Material, 2004, 13(4/8): 661-665.

[7] YANG G W. Laser ablation in liquids: applications in the synthesis of nanocrystals[J]. Progress in Material Science, 2007, 52(4): 648-698.

[8] REN X D, ZHENG L M, TANG S X, et al. Device and method for the synthesis of nano-diamond by high-energy lamp-pumped solid laser: China, 201310472643.1[P].2013-10-12(in Chinese).

[9] YANG H M, REN X D, ZHENG L M, et al. Deposition of nano-diamond film by double beam pulse laser irradiation of graphite suspendion[J]. Chinese Journal of Lasers, 2014, 41(5): 0507001(in Chinese).

[10] PRAWER S, NUGENT K W, JAMIESON D N, et al. The Raman spectrum of nanocrystalline diamond[J]. Chemical Physics Letters, 2000, 332(1/2): 93-97.

[11] PARK J B, XIONG W, GAO Y, et al. Fast growth of grapheme patterns by laser direct writing[J]. Applied Physics Letters, 2011, 98(12): 123109.

[12] HUANG K J, XIE Ch Sh, XU D Sh. Development of nanoparticles synthesis by laser evaporation condensation[J]. Laser Technology, 2004, 28(1): 5-11(in Chinese).

[13] TANG J, ZUO D L, YANG C G, et al. Spectroscopic diagnosis of air plasma induced by pulsed CO2 laser[J]. Laser Technology, 2013, 37(5): 636-641(in Chinese).

[14] SAVVATIMSKIY A I. Measurements of the melting point of graphite and the properties of liquid carbon(a review for 1963-2003)[J].Carbon, 2005, 43(6): 1115-1142.

[15] VENKATESAN T, JACOBSON D C, GIBSON J M, et al. Measurement of thermodynamic parameters of graphite by pulsed-laser melting and ion channeling[J]. Physics Review Letters, 1984, 53(4): 360-363.

[16] HUA Y Q, XIAO T, XUE Q, et al. Experimental study about laser cutting of carbon fiber reinforced polymer[J]. Laser Technology, 2013, 37(5): 565-570(in Chinese).

[17] WANG C X, YANG G W. Thermodynamics of metastable phase nucleation at the nanoscale[J]. Material Science & Engineering, 2005, R49(6): 157-202.

郑腊梅, 吕豫文, 唐少雄, 戴文杰, 随赛, 任旭东. 激光法制备超细纳米金刚石的相变机理[J]. 激光技术, 2016, 40(1): 25. ZHENG Lamei, L Yuwen, TANG Shaoxiong, DAI Wenjie, SUI Sai, REN Xudong. Phase growth mechanism of ultra-fine nano-diamond prepared by nanosecond laser[J]. Laser Technology, 2016, 40(1): 25.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!