激光与光电子学进展, 2019, 56 (18): 181403, 网络出版: 2019-09-09   

法布里-珀罗微腔中级联FRET光微流激光产生研究 下载: 533次

Cascade FRET Optofluidic Laser Generation in Fabry-Perot Microcavity
作者单位
太原理工大学新型传感器与智能控制教育部重点实验室,山西 太原 030024
摘要
制备了高品质因子的法布里-珀罗(F-P)光学微腔,结合光微流控技术,采用溶于液体的有机染料香豆素6(Cou6)、罗丹明6G(R6G)、LDS 751的混合物作为增益介质,实现了低阈值级联荧光共振能量转移(FRET)光微流激光的输出。实验采用430 nm(Cou6的最大吸收峰)脉冲光作为抽运光,利用Cou6(供体)和R6G(受体)、R6G(供体)和LDS 751(受体)之间的共振能量转移,即两级共振能量转移过程,产生了对应有机染料LDS 751发射峰的近红外光微流激光。3种染料的FRET过程极大地降低了光微流激光产生的阈值,提高了激光产生过程中的转换效率,可在单一抽运源的情况下,将激光发射波长向长波长方向扩展。
Abstract
Combining with the optical microfluidic technique, we fabricated a Fabry-Perot (F-P) optical microcavity with high quality factor. We realized the generation of a low-threshold cascade fluorescence resonance energy transfer (FRET) optofluidic laser using a mixture containing three types of organic dyes [i.e., Coumarin 6 (Cou6), Rhodamine 6G (R6G), and LDS 751] in solution as the gain media. A pulsed laser with a wavelength of 430 nm (corresponding to the maximum absorption peak of Cou6) was used as the pumping source in the experiment. Further, a near-infrared optofluidic laser was generated, with a wavelength corresponding to the emission peak of LDS 751, using the resonance energy transfer processes between Cou6 (donor) and R6G (acceptor) as well as R6G (donor) and LDS 751 (acceptor), i.e., the second-order energy transfer processes. The laser threshold of the optofluidic laser was drastically decreased, and the corresponding conversion efficiency was considerably improved using the FRET of the three aforementioned types of organic dyes. Furthermore, the emission of the optofluidic laser could be tuned to a long wavelength when only one pumping source was supplied.
参考文献

[1] . Transfer mechanisms of electronic excitation energy[J]. Radiation Research Supplement, 1960, 2: 326-339.

[2] . Resonance energy transfer: methods and applications[J]. Analytical Biochemistry, 1994, 218(1): 1-13.

[3] . Intracavity DNA melting analysis with optofluidic lasers[J]. Analytical Chemistry, 2012, 84(21): 9558-9563.

[4] . Bio-switchable optofluidic lasers based on DNA Holliday junctions[J]. Lab on a Chip, 2012, 12(19): 3673-3675.

[5] , et al. Highly sensitive fluorescent protein FRET detection using optofluidic lasers[J]. Lab on a Chip, 2013, 13(14): 2679-2681.

[6] . Single-cell biological lasers[J]. Nature Photonics, 2011, 5(7): 406-410.

[7] . Bio-optimized energy transfer in densely packed fluorescent protein enables near-maximal luminescence and solid-state lasers[J]. Nature Communications, 2014, 5: 5722.

[8] . All-biomaterial laser using vitamin and biopolymers[J]. Advanced Materials, 2013, 25(41): 5943-5947.

[9] 王卉. 水通道AQP4参与吗啡依赖的机制研究[D]. 北京: 中国人民解放军军事医学科学院, 2015.

    WangH. Mechanism of water channel AQP4 participating in morphine dependence[D]. Beijing: Academy of Military Medical Science, 2015.

[10] 裴洪翠. 麦类作物抗锈病相关蛋白互作网络的研究[D]. 泰安: 山东农业大学, 2014.

    Pei HC. Rust resistance-related protein network in triticeae crops[D]. Taian: Shandong Agricultural University, 2014.

[11] . 病毒蛋白质相互作用的研究方法及其应用[J]. 微生物学免疫学进展, 2011, 39(1): 71-75.

    . Research methods and applications of viral protein interaction[J]. Progress in Microbiology and Immunology, 2011, 39(1): 71-75.

[12] . Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature, 2006, 442(7101): 381-386.

[13] . Optofluidic microsystems for chemical and biological analysis[J]. Nature Photonics, 2011, 5(10): 591-597.

[14] , 等. 应用于激光诱导荧光检测的微透镜阵列[J]. 激光与光电子学进展, 2017, 54(8): 080402.

    , et al. Microlens array applied for laser induced fluorescence detection[J]. Laser & Optoelectronics Progress, 2017, 54(8): 080402.

[15] , 等. 谐振腔振荡式飞秒单次脉冲信噪比的测量技术[J]. 中国激光, 2016, 43(9): 0904001.

    , et al. Measurement technique of signal noise ratio based on resonator oscillation for femtosecond single-shot pulse[J]. Chinese Journal of Lasers, 2016, 43(9): 0904001.

[16] . The potential of optofluidic biolasers[J]. Nature Methods, 2014, 11(2): 141-147.

[17] , 等. 基于法布里-珀罗微腔激光的高分辨率熔解技术研究[J]. 激光与光电子学进展, 2018, 55(10): 101702.

    , et al. High resolution melting technology based on Fabry-Perot microcavity laser[J]. Laser & Optoelectronics Progress, 2018, 55(10): 101702.

[18] , 等. 基于光微流单模激光的液体折射率测量[J]. 激光与光电子学进展, 2018, 55(8): 081401.

    , et al. Measurement of liquid refractive index based on optofluidic single mode laser[J]. Laser & Optoelectronics Progress, 2018, 55(8): 081401.

[19] , 等. 基于法布里-珀罗微腔的光微流FRET激光产生[J]. 激光技术, 2017, 41(1): 14-18.

    , et al. Generation of optofluidic FRET laser based on Fabry-Perot microcavity[J]. Laser Technology, 2017, 41(1): 14-18.

[20] . Optofluidic FRET lasers using aqueous quantum dots as donors[J]. Lab on a Chip, 2016, 16(2): 353-359.

[21] , et al. Self-assembled DNA tetrahedral optofluidic lasers with precise and tunable gain control[J]. Lab on a Chip, 2013, 13(17): 3351-3354.

[22] , et al. FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles[J]. Nature Photonics, 2012, 6(9): 621-626.

[23] , et al. Generation of low-threshold optofluidic lasers in a stable Fabry-Perot microcavity[J]. Optics & Laser Technology, 2017, 91: 108-111.

[24] , et al. Optofluidic laser array based on stable high-Q Fabry-Perot microcavities[J]. Lab on a Chip, 2015, 15(19): 3862-3869.

[25] , et al. . A switchable digital microfluidic droplet dye-laser[J]. Lab on a Chip, 2011, 11(21): 3716-3719.

[26] , 等. FRET的新发展[J]. 化学进展, 2006, 18(2/3): 337-343.

    , et al. Quantum dots: the new development of FRET[J]. Progress in Chemistry, 2006, 18(2/3): 337-343.

邱诚玉, 贾卓楠, 张婷婷, 侯梦迪, 王文杰. 法布里-珀罗微腔中级联FRET光微流激光产生研究[J]. 激光与光电子学进展, 2019, 56(18): 181403. 邱诚玉, 贾卓楠, 张婷婷, 侯梦迪, 王文杰. Cascade FRET Optofluidic Laser Generation in Fabry-Perot Microcavity[J]. Laser & Optoelectronics Progress, 2019, 56(18): 181403.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!