中国激光, 2016, 43 (9): 0904003, 网络出版: 2018-05-25   

一种对称式双光栅干涉位移测量系统的研制

Development of Symmetrical Double-Grating Interferometric Displacement Measuring System
高金磊 1,2,*宗明成 1,2
作者单位
1 中国科学院微电子研究所, 北京 100029
2 中国科学院大学, 北京 100049
摘要
作为纳米位移测量技术领域的关键解决方案之一,干涉型光栅位移测量系统具有高精度、高分辨率、小体积的特点。干涉型光栅位移测量系统中采用的干涉光来自光栅的衍射,所以系统对光栅的偏摆角度较为敏感,装调难度大。为此,研制了一种对称式双光栅干涉位移测量系统,基于光学多普勒频移效应和圆偏振光干涉等原理实现高精度位移测量,系统对位公差小,装调简便。性能测试结果表明,该系统的实测分辨率为0.8 nm,重复性为1.4 nm;在1~14.5 μm的位移范围内校正前系统测量精度为15.4 nm,采用系统运动轨迹误差校正后精度为5.5 nm,进一步采用周期性误差校正后精度达到1.4 nm。
Abstract
As one of the key technical solutions for nano-displacement measurement, the interferometric grating displacement measuring system has such characteristics as high precision, high resolution and small size. Because the interferent light beams come from the diffraction of gratings, the system is sensitive to gap and rotational tolerance between the optical head and scale, and is difficult to align. A symmetrical double-grating interferometric displacement measuring system, which achieves high-precision displacement measurement, is developed based on optical effect of Doppler shift and circularly polarized light interference. The system has small tolerance and simple alignment. The performance tests show that the developed system has the actual resolution of 0.8 nm, repeatability of 1.4 nm. In the movement range of 1-14.5 μm, its accuracy without correction is 15.4 nm, and the accuracy with trajectory error correction is 5.5 nm. After periodic error correction, the accuracy can be improved to about 1.4 nm.
参考文献

[1] Guan J, Kchert P, Weichert C, et al. A high performance one-dimensional homodyne encoder and the proof of principle of a novel two-dimensional homodyne encoder[J]. Precision Engineering, 2013, 37(4): 865-870.

[2] 周绍林, 杨勇, 陈旺富, 等. 基于双光栅的纳米测量方法[J]. 光学学报, 2009, 29(3): 702-706.

    Zhou Shaolin, Yang Yong, Chen Wangfu, et al. Dual-grating-based nanometer measurement[J]. Acta Optica Sinica, 2009, 29(3): 702-706.

[3] 夏豪杰, 费业泰, 范光照, 等. 基于衍射光栅的二维纳米位移测量技术[J]. 纳米技术与精密工程, 2007, 5(4): 311-314.

    Xia Haojie, Fei Yetai, Fan Guangzhao, et al. 2D nano-displacement measurement with diffraction grating[J]. Nanotechnology and Precision Engineering, 2007, 5(4): 311-314.

[4] 彭东林, 付敏, 朱革, 等. 一种光强正交调制的新型线性位移传感器研究[J]. 光学学报, 2014, 34(12): 1212007.

    Peng Donglin, Fu Min, Zhu Ge, et al. Study on a novel linear displacement sensor based on the orthogonal modulating light intensity[J]. Acta Optica Sinica, 2014, 34(12): 1212007.

[5] Kimura A, Gao W, Arai Y, et al. Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness[J]. Precision Engineering, 2010, 34(1): 145-155.

[6] Liu C H, Cheng C H. Development of a grating based multi-degree-of-freedom laser linear encoder using diffracted light[J]. Sensors and Actuators A, 2012, 181(7): 87-93.

[7] 王雪英. 基于衍射干涉原理的高精度光栅位移测量系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2014: 54.

    Wang Xueying. Research of high-precision displacement measurement system based on the principle of diffraction and interference[D]. Harbin: Harbin Institute of Technology, 2014: 54.

[8] 楚兴春, 吕海宝, 赵尚弘. 大量程纳米级光栅干涉位移测量[J]. 光电工程, 2008, 35(1): 55-59.

    Chu Xingchun, Lü Haibao, Zhao Shanghong. Wide-range grating interferometer with nanometer resolution[J]. Opto-Electronic Engineering, 2008, 35(1): 55-59.

[9] 杨东兴, 颜树华, 杜列波, 等. 一种小型化纳米级单光栅位移测量系统的研制[J]. 红外与激光工程, 2013, 42(4): 1020-1025.

    Yang Dongxing, Yan Shuhua, Du Liebo, et al. Design of a miniature single-grating displacement measuring system with nanometer resolution[J]. Infrared and Laser Engineering, 2013, 42(4): 1020-1025.

[10] 乔栋. 高精度绝对式光栅尺测量技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2015: 131-132.

    Qiao Dong. Study on the measurement technology of high precision absolute linear encoder[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015: 131-132.

[11] 乔栋, 续志军, 吴宏圣, 等. 绝对式光栅尺细分误差补偿方法[J]. 光学学报, 2015, 35(1): 0112008.

    Qiao Dong, Xu Zhijun, Wu Hongsheng, et al. A method for compensating interpolation error of absolute linear encoder[J]. Acta Optica Sinica, 2015, 35(1): 0112008.

[12] 夏豪杰. 高精度二维平面光栅测量系统及关键技术研究[D]. 合肥: 合肥工业大学, 2006: 83-100.

    Xia Haojie. Research on precise 2-D plane grating measurement system and key technology[D]. Hefei: Hefei University of Technology, 2006: 83-100.

[13] 洪昕, 张德芬, 蒋诚志, 等. 采用光栅混频、偏振移相的多普勒位移测量技术的研究[J]. 中国激光, 1998, 25(5): 432-436.

    Hong Xin, Zhang Defen, Jiang Chengzhi, et al. Study of laser-Doppler displacement-measuring technique by polarization phase-shifting and grating produced frequency beat[J]. Chinese J Lasers, 1998, 25(5): 432-436.

[14] 杜军, 曲彦臣, 赵卫疆, 等. 相位调制激光多普勒频移测量方法的误差研究[J]. 光学学报, 2014, 34(7): 0712001.

    Du Jun, Qu Yanchen, Zhao Weijiang, et al. Measuring error of phase modulation laser Doppler shift measuring method[J]. Acta Optica Sinica, 2014, 34(7): 0712001.

[15] 于起峰, 陆宏伟, 刘肖琳. 基于图像的精密测量与运动测量[M], 北京: 科学出版社, 2002: 56-60.

    Yu Qifeng, Lu Hongwei, Liu Xiaolin. Precision measurement and motion measurement based on the images[M]. Beijing: Science Press, 2002: 56-60.

[16] 费业泰. 误差理论与数据处理[M]. 北京: 机械工业出版社, 2010: 5-6.

    Fei Yetai. Accuracy theory and data analyses[M]. Beijing: China Machine Press, 2010: 5-6.

高金磊, 宗明成. 一种对称式双光栅干涉位移测量系统的研制[J]. 中国激光, 2016, 43(9): 0904003. Gao Jinlei, Zong Mingcheng. Development of Symmetrical Double-Grating Interferometric Displacement Measuring System[J]. Chinese Journal of Lasers, 2016, 43(9): 0904003.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!