中国激光, 2020, 47 (9): 0901002, 网络出版: 2020-09-16   

基于强化学习的准分子激光器能量控制算法研究 下载: 1010次

Energy Control of Excimer Laser Based on Reinforcement Learning
孙泽旭 1,2冯泽斌 1,2周翊 1,2刘广义 1,2韩晓泉 1,2,*
作者单位
1 中国科学院微电子研究所光电研发中心, 北京 100029
2 中国科学院大学, 北京 100049
引用该论文

孙泽旭, 冯泽斌, 周翊, 刘广义, 韩晓泉. 基于强化学习的准分子激光器能量控制算法研究[J]. 中国激光, 2020, 47(9): 0901002.

Sun Zexu, Feng Zebin, Zhou Yi, Liu Guangyi, Han Xiaoquan. Energy Control of Excimer Laser Based on Reinforcement Learning[J]. Chinese Journal of Lasers, 2020, 47(9): 0901002.

参考文献

[1] 余吟山, 游利兵, 梁勖, 等. 准分子激光技术发展[J]. 中国激光, 2010, 37(9): 2253-2270.

    Yu Y S, You L B, Liang X, et al. Progress of excimer lasers technology[J]. Chinese Journal of Lasers, 2010, 37(9): 2253-2270.

[2] Watanabe H, Komae S, Tanaka S, et al. Reliable high-power injection locked 6 kHz 60 W laser for ArF immersion lithography[J]. Proceedings of SPIE, 2007, 6520: 652031.

[3] BastingD. Excimer laser technology[M]. New York: Springer, 2001.

[4] 石海燕, 赵江山, 宋兴亮, 等. 光刻用准分子激光器能量稳定性影响因素分析[J]. 红外与激光工程, 2014, 43(11): 3540-3546.

    Shi H Y, Zhao J S, Song X L, et al. Analysis on factors affecting energy stability of excimer laser for lithography[J]. Infrared and Laser Engineering, 2014, 43(11): 3540-3546.

[5] Cacouris T, Conley W, Thornes J, et al. New ArF immersion light source introduces technologies for high-volume 14 nm manufacturing and beyond[J]. Proceedings of SPIE, 2015, 9426: 942618.

[6] Cacouris T, Rechtsteiner G, Conley W. Next-generation DUV light source technologies for 10 nm and below[J]. Proceedings of SPIE, 2017, 10147: 1014718.

[7] Cacouris T, Thornes J, Sells M, et al. Advanced light source technologies for memory and logic processes[J]. Proceedings of SPIE, 2018, 10587: 105870Y.

[8] Tanaka S, Tsushima H, Nakaike T, et al. GT40A: durable 45 W ArF injection-lock laser light source for dry/immersion lithography[J]. Proceedings of SPIE, 2006, 6154: 61542O.

[9] Miyamoto H, Kumazaki T, Tsushima H, et al. The ArF laser for the next generation multiple-patterning immersion lithography supporting green operations and leading edge processes[J]. Proceedings of SPIE, 2017, 10147: 1014719.

[10] 陈晓龙, 楼风光, 何宇, 等. 高效率全国产化10 kW光纤激光器[J]. 光学学报, 2019, 39(3): 0336001.

    Chen X L, Lou F G, He Y, et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 2019, 39(3): 0336001.

[11] 刘晓东, 秦应雄, 柳洁, 等. 高功率激光大宽度矩形光束抛物带式积分镜研究[J]. 激光与光电子学进展, 2019, 56(19): 191403.

    Liu X D, Qin Y X, Liu J, et al. Research on parabolic band integrating mirror for high-power large-width rectangular laser beams[J]. Laser & Optoelectronics Progress, 2019, 56(19): 191403.

[12] 朱能伟, 方晓东. 基于FLUENT的准分子激光器气体流场数值仿真[J]. 中国激光, 2016, 43(9): 0901007.

    Zhu N W, Fang X D. FLUENT-based numerical simulation of gas flow field of excimer laser[J]. Chinese Journal of Lasers, 2016, 43(9): 0901007.

[13] 潘宁, 梁勖, 林颖, 等. 准分子激光系统中模拟信号的传输方法[J]. 红外与激光工程, 2019, 48(9): 0905003.

    Pan N, Liang X, Lin Y, et al. Transmission method of analog signal in excimer laser system[J]. Infrared and Laser Engineering, 2019, 48(9): 0905003.

[14] 范元媛, 周翊, 刘广义, 等. 高效率ArF准分子激光复合腔技术研究[J]. 中国激光, 2016, 43(2): 0202001.

    Fan Y Y, Zhou Y, Liu G Y, et al. Compound cavity ArF excimer laser with high efficiency[J]. Chinese Journal of Lasers, 2016, 43(2): 0202001.

[15] 刘斌, 丁金滨, 王魁波, 等. 高重复频率准分子激光器中放电冲击波特性的实验研究[J]. 中国激光, 2019, 46(12): 1201001.

    Liu B, Ding J B, Wang K B, et al. Experimental study of characteristics of discharge shock waves in high-repetition-rate excimer lasers[J]. Chinese Journal of Lasers, 2019, 46(12): 1201001.

[16] 朱峰, 黄珂, 陶蒙蒙, 等. 重复频率HF激光脉冲能量稳定性的理论分析[J]. 光学学报, 2019, 39(4): 0414001.

    Zhu F, Huang K, Tao M M, et al. Theoretical analysis of energy stability of repetitively pulsed HF laser[J]. Acta Optica Sinica, 2019, 39(4): 0414001.

[17] 王效顺, 梁勖, 游利兵, 等. 高重复频率ArF准分子激光器能量控制算法研究[J]. 激光技术, 2012, 36(6): 763-766.

    Wang X S, Liang X, You L B, et al. Study on energy control algorithm for high-repetition-rate ArF excimer lasers[J]. Laser Technology, 2012, 36(6): 763-766.

[18] 赵读亮, 李文洁, 梁勖, 等. 准分子激光皮肤治疗仪能量稳定性研究[J]. 红外与激光工程, 2017, 46(12): 1206001.

    Zhao D L, Li W J, Liang X, et al. Study on energy stability for excimer laser skin therapeutic apparatus[J]. Infrared and Laser Engineering, 2017, 46(12): 1206001.

[19] Sandstrom RL, Besaucele HA, Fomenkov IV, et al. 1999-12-21.

[20] Dayan P. Q-learning[J]. Machine Learning, 1992, 8(3/4): 279-292.

[21] Jacobs R A. Increased rates of convergence through learning rate adaptation[J]. Neural Networks, 1988, 1(4): 295-307.

[22] 黄友锐, 曲立国. PID控制器参数整定与实现[M]. 北京: 科学出版社, 2010.

    Huang YR, Qu LG. PID controller parameter tuning and implementation[M]. Beijing: Science Press, 2010.

[23] Chiou J S, Tsai S H, Liu M T. A PSO-based adaptive fuzzy PID-controllers[J]. Simulation Modelling Practice and Theory, 2012, 26: 49-59.

孙泽旭, 冯泽斌, 周翊, 刘广义, 韩晓泉. 基于强化学习的准分子激光器能量控制算法研究[J]. 中国激光, 2020, 47(9): 0901002. Sun Zexu, Feng Zebin, Zhou Yi, Liu Guangyi, Han Xiaoquan. Energy Control of Excimer Laser Based on Reinforcement Learning[J]. Chinese Journal of Lasers, 2020, 47(9): 0901002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!