红外与激光工程, 2018, 47 (12): 1206005, 网络出版: 2019-01-10  

Yb3+: LuLiF4晶体激光制冷的热负载管理

Thermal load management of laser cooling of Yb3+: LuLiF4 crystal
作者单位
1 华东师范大学 精密光谱科学与技术国家重点实验室, 上海 200062
2 华东师范大学 信息科技技术学院, 上海 200062
摘要
为了研究Yb3+: LuLiF4晶体在反Stokes荧光制冷过程中的热负载管理机制, 开展了在常压(1.0×105 Pa)和高真空(2.5×10-3 Pa)状态下的激光制冷实验。掺杂浓度为5 mol%的样品由两根光纤支撑, 被放置在真空状态不同的腔体内。利用波长1 020 nm, 功率3 W的激光激发样品。在常压下, 样品温度相对室温下降了ΔT≈12 K; 在高真空下, ΔT≈26 K。对于常压状态, 空气热对流负载约11.23 mW, 光纤热传导负载约0.03 mW, 腔体热辐射负载约4.8 mW。对于高真空状态, 空气热对流负载约0.03 mW, 光纤热传导负载约0.07 mW, 腔体热辐射负载约10.4 mW。实验结果表明, 当腔体压强由-105 Pa降至-10-3 Pa时, 空气热对流负载几乎忽略不计, 而腔体热辐射负载则成为作用在制冷样品上最主要的热负载。
Abstract
In order to study the thermal load management mechanism of Yb3+: LuLiF4 crystal in anti-Stokes fluorescence process, laser cooling experiment based on standard pressure (1.0×105 Pa) and high vacuum(2.5×10-3 Pa) states were carried out. The 5 mol% doped sample was supported by two optical fibers, and was placed in chamber with different vacuum states. The sample was excited via a 1 020 nm, 3 W laser. A temperature drop from room temperature of the sample was about ΔT≈12 K under standard pressure, and ΔT≈26 K under high vacuum. As for standard pressure state, thermal convection load of air was about 11.23 mW, thermal conduction load of the fibers was about 0.03 mW, thermal radiation load of the chamber was about 4.8 mW. As for high vacuum state, convection load of air was about 0.03 mW, conduction load of the fibers was about 0.07 mW, radiation load of the chamber was about 10.4 mW. As experimental results show, with the decrease of the pressure of the chamber from -105 Pa to -103 Pa, convection load of air is almost negligible, radiation load of the chamber becomes the most important thermal load of the refrigeration sample.
参考文献

[1] Seletskiy D V, Epstein R, Sheik-Bahae M, et al. Laser cooling in solids: advances and prospects [J]. Rep Prog Phys, 2016, 79(9): 096401-096423.

[2] Pringsheim P. Zwei bemerkungen über den Unterschied von Lumineszenz-und Temperaturstrahlung [J]. Z Phys, 1929, 57: 739-746.

[3] Epstein R I, Buchwald M I. Observation of laser-induced fluorescence cooling of a solids [J]. Nature, 1995, 377: 500-502.

[4] Seletskiy D V, Sheik-Bahae M. Laser cooling of solids to cryogenic temperatures [J]. Nat Photonics, 2010, 4(3): 161-164.

[5] Zhang J, Xiong Q H. Laser cooling of semiconductor by 40 Kelvin [J]. Nature, 2013, 493: 504-508.

[6] Qin W P, Zhang J H. Two basic mechanism in anti-Stokes fluorescence cooling of solids [J]. Chinese Journal of Luminescence, 1999, 20(2): 126-129. (in Chinese)

[7] Dong G, Zhang X L. Energy transfer enhanced laser cooling in Ho3+ and Tm3+ co-doped lithium yttrium fluoride [J]. J Opt Soc Am B, 2013, 30(4): 939-944.

[8] Zhang J, Xiong Q H. Laser cooling of organic-inorganic lead halide perovskites [J]. Nat Photonics, 2016, 10(2): 115-122.

[9] Zhong B, Yin J P. Laser cooling of Yb3+-doped LuLiF4 crystal[J]. Opt Lett, 2014, 39(9): 2747-2750.

[10] Zhong B, Yin J P. Cavity-enhanced laser cooling for Yb3+-doped fluoride crystal using a low-power diode laser [J]. J Opt Soc Am B, 2014, 31(9): 2116-2120.

[11] Zhang C Q, Xu L. Study on anti-Stokes fluorescent cooling technique[J]. Infrared and Laser Engineering, 2002, 31(2): 95-100. (in Chinese)

[12] Fang H, Wu Yunong. Expectation of anti-Stokes fluorescence cooling to space remote sensing [J]. Chinese Journal of Quantum Electronics, 2004, 21(4): 411-414. (in Chinese)

[13] MHehlenP, Sheik-Bahae M, Epstein R I, et al. Materials for optical cryocoolers [J]. J Mater Chem C, 2013, 1: 7471-7478.

[14] Dong G Z. Research on novel mechanism for laser cooling of rare-earth doped fluoride crystals [D]. Harbin: Harbin Engineering University, 2015. (in Chinese)

[15] Melgaard S D, Sheik-Bahae M. Solid state optical refrigeration to sub-100 Kelvin regime[J]. Sci Rep, 2016, 6: 20380-20386.

[16] Zhong B, Yin J P. Laser cooling of 5 mol% Yb3+: LuLiF4 crystal in air [J]. Opt Eng, 2017, 56(1): 011102-011113.

[17] Zhong B, Yin J P. Laser cooling performance of Yb3+-doped LuLiF4 crystal[C]//Proc SPIE, 2016, 9765: 976506.

[18] Jia Y H, Ji X M, Yin J P. Research on several parameters influencing on laser cooling of solids [J]. Acta Phys Sin, 2007, 56(3): 1770-1774. (in Chinese)

[19] Zhong B. Laser cooling of the Yb3+-doped fluoride crystal [D]. Shanghai: East China Normal University, 2014. (in Chinese)

[20] Melgaard S D. Cryogenic optical refrigeration: laser cooling of solids below 123 K[D]. Albuquerque: University of New Mexico, 2013.

[21] Yan X P, Wang D S. Summary of anti-Stokes fluorescent cooling technique [J]. Infrared and Laser Engineering, 2008, 37(3): 474-480. (in Chinese)

[22] Sheik-Bahae M, Epstein R I. Laser cooling of solids [J]. Laser Photonics Rev, 2009, 3(1-2): 67-84.

[23] Edwards B C, Epstein R I. Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration [J]. J Appl Phys, 1999, 86(11): 6489-6493.

[24] Optotherm, Inc. Emissivity in the Infrared [DB/OL]. 2018-01-25.http: //www.optotherm.com/emiss-table.htm.

[25] Imangholi B, Sheik-Bahae M, Epstein R I, et al. Differential luminescence thermometry in semiconductor laser cooling [C]//Proc SPIE, 2006, 6115: 61151C.

罗昊, 钟标, 雷永清, 石艳玲, 印建平. Yb3+: LuLiF4晶体激光制冷的热负载管理[J]. 红外与激光工程, 2018, 47(12): 1206005. Luo Hao, Zhong Biao, Lei Yongqing, Shi Yanling, Yin Jianping1. Thermal load management of laser cooling of Yb3+: LuLiF4 crystal[J]. Infrared and Laser Engineering, 2018, 47(12): 1206005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!