发光学报, 2020, 41 (8): 971, 网络出版: 2020-08-06   

InGaAs/GaAs/InGaP量子阱激光器的温度电压特性

Voltage-temperature Characteristics of InGaAs/GaAs/InGaP Quantum Well Laser
作者单位
1 曲阜师范大学物理工程学院 山东省激光偏光与信息技术重点实验室, 山东 曲阜 273165
2 中国科学院大学 信息功能材料国家重点实验室, 上海 200050
3 中国科学院 上海微系统与信息技术研究所, 上海 200050
摘要
研究了InGaAs/GaAs/InGaP 量子阱激光器在不同温度下的电流-电压特性, 并建立了一个理论模型进行描述。实验所用激光器腔长为0.3 mm, 脊条宽度为3 μm。实验测量得到该激光器在15~100 K的电压温度系数(dV/dT)为7.87~8.32 mV/K, 在100~300 K的电压温度系数为2.93~3.17 mV/K。由理论模型计算得到该激光器在15~100 K的电压温度系数为2.56~2.75 mV/K, 在100~300 K的电压温度系数为3.91~4.15 mV/K。在100~300 K, 实验测量与理论模型计算得出的电压温度系数接近, 理论模型能较好地模拟激光器的温度电压特性; 但在15~100 K相差较大, 还需要进一步完善。
Abstract
The current-voltage characteristics of an InGaAs/GaAs/InGaP quantum well laser at different temperatures have been investigated. A theoretical model has been developed to simulate the current-voltage characteristics of the laser. The length of the laser cavity utilized in the experiment is 0.3 mm, and the ridge width of the laser is 3 μm. Experimental voltage-temperature coefficients (dV/dT) of the laser are from 7.87 to 8.32 mV/K within 15-100 K, and are from 2.93 to 3.17 mV/K within 100-300 K. Theoretical voltage-temperature coefficients of the laser in the range of 15-100 K are 2.56 to 2.75 mV/K, and in the range of 100-300 K are 3.91 to 4.15 mV/K. Within 100-300 K, the theoretical voltage-temperature coefficients are close to the experimental coefficients. However, within 15-100 K, there are large differences between the theoretical coefficients and experimental ones, which need to be improved.
参考文献

[1] ZILKIEA J,SRINIVASAN P,TRITA A,et al.. Multi-micron silicon photonics platform for highly manufacturable and versatile photonic integrated circuits [J]. IEEE J. Sel. Top. Quant. Electron., 2019,25(5):8200713-1-13.

[2] WILLNERA E. Optical Fiber Telecommunications Ⅶ [M]. United States:Academic Press, 2019.

[3] WANG F,JIA S H,WANG Y L,et al.. Recent developments in modulation spectroscopy for methane detection based on tunable diode laser [J]. Appl. Sci., 2019,9(14):2816-1-16.

[4] RAMREZ-MARTNEZ N J,NEZ-VELZQUEZ M,UMNIKOV A A,et al.. Highly efficient thulium-doped high-power laser fibers fabricated by MCVD [J]. Opt. Express, 2019,27(1):196-201.

[5] FATHOLOLOUMI S,DUPONT E,CHAN C W I,et al.. Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling [J]. Opt. Express, 2012,20(4):3866-3876.

[6] 龙睿,王海龙,成若海,等.  外腔反馈对量子点激光器输出特性的影响 [J]. 发光学报, 2013,34(4):474-479.

    LONG R,WANG H L,CHENG R H,et al.. Influence of external cavity feedback on the output characteristics of quantum-dot lasers [J]. Chin. J. Lumin., 2013,34(4):474-479. (in Chinese)

[7] QIAO Z L,LI X,WANG H,et al.. High-performance 1.06 μm InGaAs/GaAs double-quantum-well semiconductor lasers with asymmetric heterostructure layers [J]. Semicond. Sci. Technol.,2019,34(5):055013-1-6.

[8] ZHANG S B,ZHANG Z M,ZHUKOVSKYI M,et al.. Up-conversion emission thermometry for semiconductor laser cooling [J]. J. Lumin., 2020,222:117088.

[9] BUTT N J,ROBERTS R A,PATNAIK S S. Laser diode optical output dependence on junction temperature for high-power laser systems [J]. Opt. Laser Technol., 2020,125:106019.

[10] LINDEMANN M,JUNG N,STADLER P,et al.. Bias current and temperature dependence of polarization dynamics in spin-lasers with electrically tunable birefringence [J]. AIP Adv., 2020,10(3):035211-1-5.

[11] SELETSKIY D V,MELGAARD S D,BIGOTTA S,et al.. Laser cooling of solids to cryogenic temperatures [J]. Nat. Photonics, 2010,4(3):161-164.

[12] MELGAARD S D,ALBRECHT A R,HEHLEN M P,et al.. Solid-state optical refrigeration to sub-100 Kelvin regime [J]. Sci. Rep., 2016,6:20380-1-6.

[13] IJICHI T,OHKUBO M,MATSUMOTO N,et al.. High power CW operation of aluminium-free InGaAs/GaAs/InGaP strained layer single quantum well ridge waveguide lasers [C]. Proceedings of The 12th IEEE International Conference on Semiconductor Laser,Davos,Switzerland, 1990:44-45.

[14] AKHLESTINA S A,VASIL’EV V K,VIKHROVA O V,et al.. Controlling the wavelength of InGaAs/GaAs/InGaP lasers by ion implantation [J]. Tech. Phys. Lett., 2010,36(2):189-191.

[15] ALEAHMAD P,BAKHSHI S,CHRISTODOULIDES D,et al.. Controllable red and blue shifting of InGaAsP quantum well bandgap energy for photonic device integration [J]. Mater. Res. Express, 2015,2(8):086302-1-5.

[16] BIRYUKOV A A,ZVONKOV B N,NEKORKIN S M,et al.. Efficient generation of the first waveguide mode in the InGaAs/GaAs/InGaP heterolaser [J]. Semiconductors, 2008,42(3):354-357.

[17] 汤瑜,曹春芳,赵旭熠,等. InGaAs/GaAs/InGaP量子阱激光器的激光单模特性研究 [J]. 激光与光电子学进展, 2019,56(13):131402-1-5.

    TANG Y,CAO C F,ZHAO X Y,et al.. Laser single-mode characteristics of InGaAs/GaAs/InGaP quantum well lasers [J]. Laser Optoelect. Prog., 2019,56(13):131402-1-5. (in Chinese)

[18] VAN ZEGHBROECK Z. Principles of Semiconductor Devices [M]. Colarado:Colarado University, 2004.

[19] GOETZ K H,BIMBERG D,JRGENSEN H,et al.. Optical and crystallographic properties and impurity incorporation of GaxIn1-xAs (0.44

[20] PAUL S,ROY J B,BASU P K. Empirical expressions for the alloy composition and temperature dependence of the band gap and intrinsic carrier density in GaxIn1-xAs [J]. J. Appl. Phys., 1991,69(2):827-829.

[21] HANSEN G L,SCHMIT J L. Calculation of intrinsic carrier concentration in Hg1-xCdxTe [J]. J. Appl. Phys., 1983,54(3):1639-1640.

[22] BEBB H B,RATLIFF C R. Numerical tabulation of integrals of Fermi functions using klim plim density of states [J]. J. Appl. Phys., 1971,42(8):3189-3194.

[23] ROSBECK J P,HARPER M E. Doping and composition profiling in Hg1-xCdxTe by the graded capacitance-voltage method [J]. J. Appl. Phys., 1991,62(5):1717-1722.

[24] XI Y,SCHUBERT E F. Junction-temperature measurement in GaN ultraviolet light-emitting diodes using diode forward voltage method [J]. Appl. Phys. Lett., 2004,85(12):2163-2165.

李金友, 王海龙, 杨锦, 曹春芳, 赵旭熠, 于文富, 龚谦. InGaAs/GaAs/InGaP量子阱激光器的温度电压特性[J]. 发光学报, 2020, 41(8): 971. LI Jin-you, WANG Hai-long, YANG Jin, CAO Chun-fang, ZHAO Xu-yi, YU Wen-fu, GONG Qian. Voltage-temperature Characteristics of InGaAs/GaAs/InGaP Quantum Well Laser[J]. Chinese Journal of Luminescence, 2020, 41(8): 971.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!