发光学报, 2018, 39 (3): 356, 网络出版: 2018-04-09  

掺杂富勒烯衍生物阻变存储器存储性质的调控研究

Bistable Memory Devices Based on Fullerenes Derivative Doped Resistive Memory Properties
作者单位
1 北京理工大学 光电学院, 北京 100081
2 贵州大学 大数据与信息工程学院, 贵州 贵阳 550025
引用该论文

李静玉, 林青, 章婷, 邓朝勇. 掺杂富勒烯衍生物阻变存储器存储性质的调控研究[J]. 发光学报, 2018, 39(3): 356.

LI Jing-yu, LIN Qing, ZHANG Ting, DENG Chao-yong. Bistable Memory Devices Based on Fullerenes Derivative Doped Resistive Memory Properties[J]. Chinese Journal of Luminescence, 2018, 39(3): 356.

参考文献

[1] LIN W P, LIU S J, GONG T, et al.. Polymer-based resistive memory materials and devices [J]. Adv. Mater., 2014, 26(4):570-606.

[2] MA Z, OOI P C, LI F, et al.. Electrical bistabilities and conduction mechanisms of nonvolatile memories based on a polymethylsilsesquioxane insulating layer containing CdSe/ZnS quantum dots [J]. J. Electron. Mater., 2015, 44(10):3962-3966.

[3] DONG Y Y, PARK H M, KIM S W, et al.. Enhancement of memory margins for stable organic bistable devices based on graphene-oxide layers due to embedded CuInS2 quantum dots [J]. Carbon, 2014, 75(75):244-248.

[4] LAI Q, ZHU Z, CHEN Y, et al.. Organic nonvolatile memory by dopant-configurable polymer [J]. Appl. Phys. Lett., 2006, 88(13):391.

[5] KORNER P O, SHALLCROSS R C, MAIBACH E, et al.. Optical and electrical multilevel storage in organic memory passive matrix arrays [J]. Org. Electron., 2014, 15(15):3688-3693.

[6] KIM T W, YANG Y, LI F, et al.. Electrical memory devices based on inorganic/organic nanocomposites [J]. NPG Asia Mater., 2012, 4(6):e18.

[7] 石胜伟, 彭俊彪. 有机电双稳态器件 [J]. 化学进展, 2007, 19(9):1371-1380.

    SHI D H, PENG J B. Organic electrical bistable devices [J]. Prog. Chem., 2007, 19(9):1371-1380. (in Chinese)

[8] ZHANG B, CHEN Y, NEOH K G, et al.. Organic electronic memory devices [J]. Elect. Memory Mater. Dev., 2015:1-53.

[9] HU B, FEI Z, ZHU X, et al.. Nonvolatile bistable resistive switching in a new polyimide bearing 9-phenyl-9H-carbazole pendant [J]. J. Mater. Chem., 2011, 22(2):520-526.

[10] JANG J, SONG Y, YOO D, et al.. Energy consumption estimation of organic nonvolatile memory devices on a flexible plastic substrate [J]. Adv. Electron. Mater., 2016, 1(11):1500186.

[11] LEE B H, BAE H, SEONG H, et al.. Direct observation of a carbon filament in water-resistant organic memory [J]. ACS Nano, 2015, 9(7):7306-13.

[12] SONGY, LING Q D, LIM S L, et al.. Electrically bistable thin-film device based on PVK and GNPs polymer material [J]. IEEE Electron Dev. Lett., 2007, 28(2):107-110.

[13] PRAKASH A, OUYANG J, LIN J L, et al.. Polymer memory device based on conjugated polymer and gold nanoparticles [J]. J. Appl. Phys., 2006, 100(5):539.

[14] OUYANG J. Temperature-sensitive asymmetrical bipolar resistive switches of polymer: nanoparticle memory devices [J]. Org. Electron., 2014, 15(9):1913-1922.

[15] OUYANG J. Electron transfer at the contact between Al electrode and gold nanoparticles of polymer: nanoparticle resistive switching devices studied by alternating current impedance spectroscopy [J]. Appl. Phys. Lett., 2013, 103(23):233508-1-4.

[16] ZHANG X, XU J, ZHANG X, et al.. Electricalbistable properties of nonvolatile memory device based on hybrid ZCIS NCs∶PMMA film [J]. Mater. Sci. Semicond. Proc., 2017, 57:105-109.

[17] XIE L H, LINGQ D, HOU X Y, et al.. An effective friedel-crafts postfunctionalization of poly(n-vinylcarbazole) to tune carrier transportation of supramolecular organic semiconductors based on π-stacked polymers for nonvolatile flash memory cell [J]. J. Am. Chem. Soc., 2008, 130(7):2120-2121.

[18] COLLIER C P, MATTERSTEIG G, WONG E W, et al.. A \[2]catenane-based solid state electronically reconfigurable switch [J]. Science, 2000, 289(5482):1172-1175.

[19] SUN Y, LI L, WEN D, et al.. Bistable electrical switching and nonvolatile memory effect in mixed composite of oxadiazole acceptor and carbazole donor [J]. Org. Electron., 2015, 25:283-288.

[20] ZHUANG X D, CHEN Y, LIU G, et al.. Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect [J]. Adv. Mater., 2010, 22(15):1731-1735.

[21] HA H, KIM O. Unipolar switching characteristics of nonvolatile memory devices based on poly(3,4-ethylenedioxythi- ophene)∶poly(styrene sulfonate) thin films [J]. Jpn. J. Appl. Phys., 2009, 48:031024.

[22] AWAIS M N, CHOI K H. Resistive switching and current conduction mechanism in full organic resistive switch with the sandwiched structure of poly(3,4-ethylenedioxythiophene)∶poly(styrenesulfonate)/poly(4-vinylphenol)/poly(3,4-ethylenediox-ythiophene)∶poly(styrenesulfonate) [J]. Electron. Mater. Lett., 2014, 10(3):601-606.

[23] MOLLER S, PERLOV C, JACKSON W, et al.. A polymer/semiconductor write-once read-many-times memory [J]. Nature, 2003, 426(6963):166.

[24] LI X, LU Y, GUAN L, et al.. Effects of buffer layer and thermal annealing on the performance of hybrid Cu2S/PVK electrically bistable devices [J]. Solid-State Electron., 2016, 123:101-105.

[25] LI X, TANG A, LI J, et al.. Heating-up synthesis of MoS2 nanosheets and their electrical bistability performance [J]. Nanoscale Res. Lett., 2016, 11(1):171.

[26] LI J, TANG A, LI X, et al.. Negative differential resistance and carrier transport of electrically bistable devices based on poly(N-vinylcarbazole)-silver sulfide composites [J]. Nanoscale Res. Lett., 2014, 9(1):128.

[27] CAO Y P, HU Y F, LI J T, et al.. Electrical bistable devices using composites of zinc sulfide nanoparticles and poly-(N-vinyl- carbazole) [J]. Chin. Phys. B, 2015, 24(3):298-301.

[28] MICHALE J H, JULIA E W, ZHONG C J, et al.. Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size [J]. Langmuir, 1998, 14(1):17-30.

[29] WU C, LI F, GUO T, et al.. Controlling memory effects of three-layer structured hybrid bistable devices based on graphene sheets sandwiched between two laminated polymer layers [J]. Org. Electron., 2012, 13(1):178-183.

[30] HE Y, ZHAO G, PENG B, et al.. High-yield synthesis and electrochemical and photovoltaic properties of indene-C70 bisadduct [J]. Adv. Funct. Mater., 2010, 20(19):3383-3389.

[31] SUN Y M, LU J G, AI C P, et al.. Enhancement of memory margins in the polymer composite of \[6,6]-phenyl-C61-butyric acid methyl ester and polystyrene [J]. Phys. Chem. Chem. Phys., 2016, 18(44):30808.

[32] OUANG J. Materials effects on the electrode-sensitive bipolar resistive switches of polymer: gold nanoparticle memory devices [J]. Org. Electron., 2013, 14(6):1458-1466.

[33] WANG J, GAO F, GREENHAM N C. Low-power write-once-read-many-times memory devices [J]. Appl. Phys. Lett., 2010, 97(5):164.

[34] LIU J Q, ZENG Z Y, CAO X H, et al.. Preparation of MoS2-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes [J]. Small, 2012, 8(22):3517-3522.

[35] ISLAM S M, BANERJI P, BANERJEE S. Electrical bistability, negative differential resistance and carrier transport in flexible organic memory device based on polymer bilayer structure [J]. Org. Electron., 2014, 15(1):144-149.

[36] LI Y, NI X, DING S. High performance resistive switching memory organic films prepared through PPy growing on graphene oxide substrate [J]. J. Mater. Sci.: Mater. Electron., 2015, 26(11):9001-9009.

[37] SON D I, PARK D H, CHOI W K, et al.. Carrier transport in flexible organic bistable devices of ZnO nanoparticles embedded in an insulating poly(methyl methacrylate) polymer layer [J]. Nanotechnology, 2009, 20(19):195203.

李静玉, 林青, 章婷, 邓朝勇. 掺杂富勒烯衍生物阻变存储器存储性质的调控研究[J]. 发光学报, 2018, 39(3): 356. LI Jing-yu, LIN Qing, ZHANG Ting, DENG Chao-yong. Bistable Memory Devices Based on Fullerenes Derivative Doped Resistive Memory Properties[J]. Chinese Journal of Luminescence, 2018, 39(3): 356.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!