光散射学报, 2008, 20 (3): 258, 网络出版: 2014-01-21   

532nm连续激光晶化非晶硅薄膜的原位拉曼光谱研究

In-situ Raman Spectroscopic Study on the Crystallization of Amorphous Silicon Thin Films with a 532 nm Continuous-wave Laser
作者单位
1 郑州大学物理工程学院材料物理教育部重点实验室, 郑州 450052
2 河南农业大学理学院, 郑州 450002
摘要
用磁控溅射制备了非晶硅薄膜, 用波长为532 nm的连续激光退火和显微Raman光谱原位测试技术和场发射扫描电子显微镜研究了非晶硅薄膜在不同激光功率密度和不同扫描速度下的晶化状态。结果表明, 激光照射时间10 s, 激光功率密度大于2.929×105 W/cm2时, 能实现非晶硅薄膜晶化。在激光功率密度为5.093×105 W/cm2, 扫描速度为10 mm/s时非晶硅开始向多晶硅转化。在5.093×105 W/cm2的功率密度下, 以1.0 mm/s的扫描速度退火非晶硅薄膜, 得到的晶粒直径为740 nm。
Abstract
Amorphous silicon thin films were prepared by magnetron sputtering and crystallization of the films by a 532 nm continuous-wave laser under different power densities and scan speeds was studied by in-situ micro-Raman spectroscopic measurements and field emission scanning electron microscope. It is shown that the amorphous Si films are able to crystallize within 10 s at laser power densities above 2.929×105 W/cm2. The amorphous Si starts to transform to polycrystalline Si at 10 mm/s scan speed under illumination of 5.093×105 W/cm2 laser power density. The crystal size around 740 nm was obtained at 1 mm/s scan speed with laser power density of 5.093×105 W/cm2.
参考文献

[1] 刘传珍, 杨柏梁, 李牧菊, 等. 激光退火法低温制备多晶硅薄膜的研究[J]. 液晶与显示, 2000, 15(1): 46-52.

[2] C H OH, M OZAWA, M Matsumura. A novel phase-modulated excimer-Laser crystallization method of silicon thin films[J]. Jpn J Appl Phys, 1998, 37: 492-495.

[3] R Ishihara, A Burtsev, P F A Alkemade. Location-control of large Si grains by dual-beam excimer-laser and thick oxide portion[J]. Jpn J Appl Phys, 2000, 39: 3872-3878.

[4] H Kuriyama, S Kiyama, S Noguchi. Enlargement of poly-Si film grain size by excimer laser annealing and its application to high-performance poly-Si thin film transistor[J]. Jpn J Appl Phys, 1991, 30: 3700-3703.

[5] 王晓伟, 王立, 马忠元, 等. 激光干涉结晶法制备三维有序分布的nc-Si 阵列[J]. 中国激光, 2002, A29: 363-365.

[6] J F Michaud, R Rogel, T Mohammed-Brahim, et al. CW argon laser crystallization of silicon films: structural properties[J]. J Non-Crystalline Solids, 2006, 352: 998-1002.

[7] S J Park, Y M Ku, E H Kim, et al. Selective crystallization of amorphous silicon thin film by a CW green laser[J]. Journal of Non-Crystalline Solids, 2006, 352: 993-997.

[8] S J Park, Y M Ku, K H Kim, et al. CW laser crystallization of amorphous silicon; dependence of amorphous silicon thickness and pattern width on the grain size[J]. Thin Solid Films, 2006, 511-512: 243-247.

[9] H S Mavi, K S Jain, A K Shukla, et al. Raman study of cw laser-induced crystallization of a-Si:H films on quartz and sapphire substrates[J]. J Appl Phys, 1991, 69(6): 3696-3701.

[10] A Saboundji, T Mohammed-Brahim, G Andra, et al. Thin film transistors on large single crystalline regions of silicon induced by cw laser crystallization[J]. J Non-Crystal Solids, 2004, 338-340: 758-761.

[11] A Hara, M Takei, K Yoshino, et al. Self-aligned top and bottom metal double gate low temperature poly-Si TFT fabricated at 550°C on non-alkali glass substrate by using DPSS CW laser lateral crystallization method[J]. IEEE IEDM, 2003, 03: 211-214.

[12] F Falk, G Andra. Laser crystallization — a way to produce crystalline silicon films onglass or on polymer substrates[J]. J Crystal Growth, 2006, 287: 397-401.

[13] G Andra, J Bergmann, F Falk. Laser crystallized multicrystalline silicon thin films on glass[J]. Thin Solid Films, 2005, 487: 77-80.

[14] Minghong Lee, Seungjae Moon, Costas P. Grigoropoulos. In situ visualization of interface dynamics during the double laser recrystallization of amorphous silicon thin films[J]. Journal of Crystal Growth, 2001, 226: 8-12.

[15] 李乐愚, 丁炜, 李碧波, 等. 硅纳米线拉曼光谱的波长选择效应[J]. 光散射学报, 2000, 12(2): 184-186.

[16] 晁明举, 张红瑞, 梁二军. 多孔硅的拉曼光谱研究[J]. 光散射学报, 2002, 14(1): 40-43.

[17] 刘峰名, 任斌, 汤儆, 等. 硅刻蚀的现场拉曼光谱研究[J]. 光散射学报, 1997, 9(2-3): 231-233.

[18] SHEN Ze-xiang. Some unique applications of Raman microscopy in Si device characterization[J]. 2004, 16(3): 268-275.

[19] Andrea Carlo Ferrari. Growth and Raman spectroscopy of silicon nanowires[J]. 光散射学报, 2005, 17(3): 219-221.

[20] 庞宏杰, 王存山, 张凯舒, 等. 非晶硅薄膜激光晶化及其结构分析[J]. 应用激光, 2007, 27(1): 18-21.

[21] J E Moody, R H Hendel. Temperature profiles induced by a scanning cw laser beam[J]. J Appl Phys, 1982, 53(6): 4364-4371.

[22] H S Mavi, S Prusty, A K Shukla, et al. Continuous wave laser-induced temperature rise in the thin films of silicon nanocrystals using Raman scattering[J]. Thin Solid Films, 2003, 425: 90-96.

[23] Y I Nissim, A Lietoila, R B Gold, et al. Temperature distributions produced in semiconductors by a scanning elliptical or circular cw laser beam[J]. J Appl Phys, 1980, 51(1): 274-279.

[24] M G Grimaldi, P Baeri, M A Malvezzi. Melting temperature of relaxed amorphous silicon[J]. Phys Rev, 1991, B44: 1546-1553.

徐二明, 袁超, 王俊平, 霍浩磊, 梁二军. 532nm连续激光晶化非晶硅薄膜的原位拉曼光谱研究[J]. 光散射学报, 2008, 20(3): 258. XU Er-ming, Yuan Chao, WANG Jun-ping, HUO Hao-lei, LIANG Er-jun. In-situ Raman Spectroscopic Study on the Crystallization of Amorphous Silicon Thin Films with a 532 nm Continuous-wave Laser[J]. The Journal of Light Scattering, 2008, 20(3): 258.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!