红外与毫米波学报, 2018, 37 (4): 385, 网络出版: 2019-01-10  

GaAs基InAs/AlSb二维电子气结构的生长优化

Growth optimization of GaAs-based InAs/AlSb 2DEG structure
作者单位
1 西安电子科技大学 微电子学院, 陕西 西安 710071
2 中国科学院半导体研究所 超晶格实验室, 北京 100083
3 中国人民解放军陆军工程大学石家庄校区 导弹工程系, 河北 石家庄 050003
4 西北大学 光子学与光子技术研究所, 陕西 西安 710069
5 中国科学院大学 材料科学与光电技术学院, 北京 100049
摘要
采用分子束外延设备(MBE), 外延生长了InAs/AlSb二维电子气结构样品.样品制备过程中, 通过优化AlGaSb缓冲层厚度和InAs/AlSb界面厚度、改变AlSb隔离层厚度, 分别对比了材料二维电子气特性的变化, 并在隔离层厚度为5 nm时, 获得了室温电子迁移率为20500 cm2/V·s, 面电荷密度为2.0×1012/cm2的InAs/AlSb二维电子气结构样品, 为InAs/AlSb高电子迁移率晶体管的研究和制备提供了参考依据.
Abstract
InAs/AlSb two-dimensional electron gas (2DEG) structures were successfully grown by MBE equipment. 2DEG characteristics of samples were improved by optimizing the the thickness of AlGaSb buffer layer, the thickness of InAs/AlSb interface layer, and the thickness of AlSb spacer. The InAs/AlSb 2DEG structure sample with an electron mobility of 20500 cm2/V·s and a sheet electron density of 2.0×1012/cm2 were achieved when the thickness of AlSb spacer is fixed at 5 nm. It provides a reference for the research and fabrication of InAs/AlSb HEMT.
参考文献

[1] Nguyen L D, Larson L E, Mishra U K. Ultra-high-speed modulation-doped field-effect transistors: A-torial review[J]. Proceedings of the IEEE, 1992, 80(4): 494-518.

[2] Dingle R, Strmer H L, Gossard A C, et al. Electron mobilities in modulationdoped semiconductor heterojunction superlattices[J]. Applied Physics Letters, 1978, 33(7): 665-667.

[3] Wang J, Wang G W, Xu Y Q, et al. Molecular beam epitaxy growth of high electron mobility InAs/AlSb deep quantum well structure[J]. Journal of Applied Physics, 2013, 114(1):013704.

[4] Moschetti G, Zhao H, Nilsson P-, et al. Anisotropic transport properties in InAs/AlSb heterostructures[J]. Applied Physics Letters, 2010, 97(24): 243510.

[5] Sasa S, Yamamoto Y, Izumiya S, et al. Increased electron concentration in InAs/AlGaSb heterostructures using a Si planar doped ultrathin InAs quantum well[J]. Japanese Journal of Applied Physics, 1997, 36(1):1869-1871.

[6] Bennett B R, Ancona M G, Champlain J G, et al. Demonstration of high-mobility electron and hole transport in a single InGaSb well for complementary circuits[J]. Journal of Crystal Growth, 2009, 312(1):37-40.

[7] Lin C, Chou Y, Lange M, et al. 0.1 μm n+-InAs-AlSbInAs HEMT MMIC technology for phased-array applications: Compound semiconductor integrated circuit symposium, 2007[C]. Portland, OR, USA: IEEE, 2007: 1-4.

[8] Ahmed I, Chowdhury S, Alam Md H, et al. Performance analysis of InAs/AlSb MOS-HEMT by self-consistent capacitance-voltage characterization and direct tunneling gate leakage current[J]. ECS Transactions, 2016, 72(2):189-195.

[9] Tamilselvi S, Tamilarasi S, Mohanbabu A, et al. Analysis of noise performance in InAs DG-MOSHEMT: Devices for integrated circuit, 2017[C]. Kalyani, India: IEEE, 2017:695-698.

[10] Guan H, Guo H. An optimized fitting function with least square approximation in InAs/AlSb HFET small-signal model for characterizing the frequency dependency of impact ionization effect[J]. Chinese Physics B, 2017, 26(5): 058501.

[11] Bennett B R, Moore W J, Yang M J, et al. Transport properties of Be-and Si-doped AlSb[J]. Journal of Applied Physics, 2000, 87(11): 7876-7879.

[12] Brar B, Leonard D. Spiral growth of GaSb on (001) GaAs using molecular beam epitaxy[J]. Applied Physics Letters, 1995, 66(4): 463-465.

[13] Ghalamestani S G, Bergb M, Dick K A, et al. High quality InAs and GaSb thin layers grown on Si (1 1 1)[J]. Journal of Crystal Growth, 2011, 332(1):12-16.

[14] Akahane K, Yamamoto N, Gozu S-I, et al. Heteroepitaxial growth of GaSb on Si(0 0 1) substrates[J]. Journal of Crystal Growth, 2004, 264(1): 21-25.

[15] Kim Y H, Lee J Y, Noh Y G, et al. Growth mode and structural characterization of GaSb on Si (001) substrate: A transmission electron microscopy study[J]. Applied Physics Letters, 2006, 88(24): 241907.

[16] Brar B, Leonard D. Spiral growth of GaSb on (001) GaAs using molecular beam epitaxy[J]. Applied Physics Letters, 1998, 66(24): 463-465.

[17] Choi C H, Hultman L, Barnett S A. Ion-irradiation-induced suppression of three-dimensional island formation during InAs growth on Si(100)[J]. Journal of Vacuum Science & Technology A, 1990, 8(3): 1587-1592.

[18] Zhao Z M, Hulko O, Yoon T S, et al. Initial stage of InAs growth on Si (001) studied by high-resolution transmission electron microscopy[J]. Journal of Applied Physics, 2005, 98(12): 123526.

[19] Mano T, Fujioka H, Ono K, et al. InAs nanocrystal growth on Si (100)[J]. Applied Surface Science, 1998, 130-132: 760-764.

[20] Proessdorf A, Grosse F, Romanyuk O, et al. Interface engineering for improved growth of GaSb on Si (1 1 1)[J]. Journal of Crystal Growth, 2011, 323(1): 401-404.

[21] Tuttle G, Kroemer H, English J H. Effects of interface layer sequencing on the transport properties of InAs/AlSb quantum wells: Evidence for antisite donors at the InAs/AlSb interface[J]. Journal of Applied Physics, 1990, 67(6): 3032-3037.

[22] Bolognesi C R, Kroemer H, English J H. Well width dependence of electron transport in molecular-beam epitaxially grown InAs/AlSb quantum wells[J]. Journal of Vacuum Science & Technology B, 1992, 10(2): 877-879.

[23] WANG Hong-Pei, WANG Guang-Long, YU Ying, et al. Properties of δ GaAs/AlxGa1-xAs 2DEG with embedded InAs quantum dots[J]. Acta Physica Sinica. (王红培, 王广龙, 喻颖, 等. 内嵌InAs量子点的δ掺杂GaAs/AlxGa1-xAs二维电子气特性分析. 物理学报), 2013, 62(20): 422-427.

崔晓然, 吕红亮, 李金伦, 苏向斌, 徐应强, 牛智川. GaAs基InAs/AlSb二维电子气结构的生长优化[J]. 红外与毫米波学报, 2018, 37(4): 385. CUI Xiao-Ran, LYU Hong-Liang, LI Jin-Lun, SU Xiang-Bin, XU Ying-Qiang, NIU Zhi-Chuan. Growth optimization of GaAs-based InAs/AlSb 2DEG structure[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 385.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!