激光生物学报, 2019, 28 (5): 385, 网络出版: 2019-11-14  

微生物胞外多糖黄原胶的应用与研究进展

Advances in Applications and Research of Xanthan Gum
作者单位
上海交通大学生命科学技术学院微生物代谢国家重点实验室, 代谢与发育科学国际合作联合实验室, 上海 200240
摘要
黄原胶是由植物病原菌野油菜黄单胞菌产生的一种天然胞外多糖, 其结构为重复单元聚合而成的多聚体, 单元结构中包含了D-葡萄糖、D-甘露糖和D-葡糖醛酸基团以及O-乙酰和丙酮酸基团。黄原胶具有优良的流变特性, 作为增稠剂和稳定剂等被广泛用于食品、药品和化妆品等多个行业。本文主要综述了黄原胶的结构、性质、应用、生物合成、生物合成调控和工业生产条件, 为黄原胶的后续研究提供理论基础。
Abstract
Xanthan gum is a natural complex exopolysaccharide produced by the phytopathogen Xanthomonas campestris pv. campestris(Xcc). It is polymerized from a repeating unit, which consists of the D-glucosyl, D-mannosyl, and D-glucuronyl residues and variable proportions of O-acetyl and pyruvyl residues. Because of xanthan gum’s outstanding rheological properties, it is widely used as a stabilizer and thickener in many industries including food, pharmaceutical and cosmetic industries. This review summarizes its structural characteristics, rheological properties, applications and fermentation conditions, as well as its biosynthetic pathways and regulation networks, paving the way for its further study.
参考文献

[1] MARGARITIS A, ZAJIC J E. Mixing, mass transfer, and scale-up of polysaccharide fermentations[J]. Biotechnology and Bioengineering, 1978, 20(7): 939-1001.

[2] VAUTERIN L. Reclassification of Xanthomonas[J]. International Journal of Systematic Bacteriology, 1995, 45(3): 472-489.

[3] RADEMAKER J L W, LOUWS F J, SCHULTZ M H, et al. A comprehensive species to strain taxonomic framework for Xanthomonas[J]. Phytopathology, 2005, 95(9): 1098-1111.

[4] JANSSON P E, KENNE L, LINDBERG B. Structure of the extracellular polysaccharide from Xanthomonas campestris[J]. Carbohydrate Research, 1975, 45(1): 275-282.

[5] ROSALAM S, ENGLAND R. Review of xanthan gum production from unmodified starches by Xanthomonas comprestris sp.[J]. Enzyme and Microbial Technology, 2006, 39(2): 197-207.

[6] BIANCO M I, TOUM L, YARYURA P M, et al. Xanthan pyruvilation is essential for the virulence of Xanthomonas campestris pv. campestris[J]. Molecular Plant-Microbe Interactions, 2016, 29(9): 688.

[7] MOORHOUSE R, WALKINSHAW M D, ARNOTT S. Xanthan gum-molecular conformation and interactions[J]. ACS Symposium Series, 1977, 45(8): 90-102.

[8] CHEETHAM N W H, MASHIMBA E N M. Proton and carbon-13 NMR studies on xanthan derivatives[J]. Carbohydrate Polymers, 1992, 17(2): 127-136.

[9] GAMINI A, MANDEL M. Physicochemical properties of aqueous xanthan solutions: static light scattering[J]. Biopolymers, 1994, 34(6): 783-797.

[10] HJERDE T, KRISTIANSEN T S, STOKKE B T, et al. Conformation dependent depolymerisation kinetics of polysaccharides studied by viscosity measurements[J]. Carbohydrate Polymers, 1994, 24(4): 265-275.

[11] STOKKE B T, CHRISTENSEN B E. Release of disordered xanthan oligomers upon partial acid hydrolysis of double-stranded xanthan[J]. Food Hydrocolloids, 1996, 10(1): 83-89.

[12] 郭瑞, 丁恩勇. 黄原胶的结构、性能与应用[J]. 日用化学工业, 2006, 36(1): 42-45.

    GUO Rui, DING Enyong. Structure performance and applications of xanthan gum[J]. China Surfactant Detergent and Cosmetics, 2006, 36(1): 42-45.

[13] KATZBAUER B. Properties and applications of xanthan gum[J]. Polymer Degradation & Stability, 1998, 59(1-3): 81-84.

[14] CUVELIER G, LAUNAY B. Concentration regimes in xanthan gum solutions deduced from flow and viscoelastic properties[J]. Carbohydrate Polymers, 1986, 6(5): 321-333.

[15] TAKO M, NAKAMURA S. Rheological properties of deacetylated xanthan in aqueous media[J]. Agricultural and Biological Chemistry, 1984, 48(12): 2987-2993.

[16] BRADSHAW I J, NISBET B A, KERR M H,et al. Modified xanthan-its preparation and viscosity[J]. Carbohydrate Polymers, 1983, 3(1): 23-38.

[17] 赵正涛, 王秀菊, 安鑫, 等. 黄原胶流变学特性及其协效性研究[J]. 中国食品添加剂, 2009(6): 76-81.

    ZHAO Zhengtao, WANG Xiuju, AN Xin,et al. Rheological characteristic of xanthan gum and its synergistic characteristics[J]. China Food Additives, 2009(6): 76-81.

[18] TAKO M. Synergistic interaction between deacylated xanthan and galactomannan[J].Journal of Carbohydrate Chemistry, 1991, 10(4): 619-633.

[19] ZHAN D F, RIDOUT M J, BROWNSEY G J, et al. Xanthan-locust bean gum interactions and gelation[J]. Carbohydrate Polymers, 1993, 21(1): 53-58.

[20] IELPI L, COUSO R O, DANKERT M A. Pyruvic acid acetal residues are transferred from phosphoenolpyruvate to the pentasaccharide-P-P-lipid[J]. Biochemical and Biophysical Research Communications, 1981, 102(4): 1400-1408.

[21] IELPI L, COUSO R O, DANKERT M A. Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris[J]. Journal of Bacteriology, 1993, 175(9): 2490-2500.

[22] BECKER A, KATZEN F, PHLER A, et al. Xanthan gum biosynthesis and application: a biochemical/genetic perspective[J]. Applied Microbiology and Biotechnology, 1998, 50(2): 145-152.

[23] FREITAS F, ALVES V D, REIS M A M. Advances in bacterial exopolysaccharides: from production to biotechnological applications[J]. Trends in Biotechnology, 2011, 29(8): 388-398.

[24] ANKE B. Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways[J]. Frontiers in Microbiology, 2015, 6: 687.

[25] VORHLTER F J, SCHEIKER S, GOESMANN A, et al. The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis[J]. Journal of Biotechnology, 2008, 134(1): 33-45.

[26] CRECY-LAGARD V D, GLASER P, LEJEUNE P, et al. A Xanthomonas campestris pv. campestris protein similar to catabolite activation factor is involved in regulation of phytopathogenicity[J]. Journal of Bacteriology, 1990, 172(10): 5877-5883.

[27] ZHANG L H. A novel C-di-GMP effector linking intracellular virulence regulon to quorum sensing and hypoxia sensing[J]. Virulence, 2010, 1(5): 391-394.

[28] CHIN K H, LEE Y C, TU Z L, et al. The cAMP receptor-like protein Clpis a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris[J]. Journal of Molecular Biology, 2010, 396(3): 646-662.

[29] TAO F, HE Y W, WU D H, et al. The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors[J]. Journal of Bacteriology, 2010, 192(4): 1020-1029.

[30] TANG J L, LIU Y N, BARBER C E, et al. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris[J]. Molecular Genetics and Genomics, 1991, 226(3): 409-417.

[31] WILSON T J, BERTRAND N, TANG J L, et al. The rpfA gene of Xanthomonas campestris pathovar campestris, which is involved in the regulation of pathogenicity factor production, encodes an aconitase[J]. Molecular Microbiology, 2010, 28(5): 961-970.

[32] DOW J M, FENG J X, BARBER C E, et al. Novel genes involved in the regulation of pathogenicity factor production within the rpf gene cluster of Xanthomonas campestris[J]. Microbiology, 2000, 146(4): 885-891.

[33] ZHOU L, ZHANG L H, CMARA M, et al. DSF family of quorum sensing signals: diversity, biosynthesis, and turnover[J]. Trends in Microbiology, 2017, 25(4): 293.

[34] BARBER C E, TANG J L, FENG J X, et al. A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule[J]. Molecular Microbiology, 1997, 24(3): 555-566.

[35] HE Y W, WANG C, ZHOU L, et al. Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris involve either phosphorelay or receiver domain-protein interaction[J]. Journal of Biological Chemistry, 2006, 281(44): 33414-33421.

[36] HE Y W, NG Y J, XU M, et al. Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network[J]. Molecular Microbiology, 2010, 64(2): 281-292.

[37] WANG X Y, ZHOU L, YANG J, et al. The rpfB-dependent quorum sensing signal turnover system is required for adaptation and virulence in rice bacterial blight pathogen Xanthomonas oryzae pv. oryzae[J]. Molecular Plant-microbe Interactions, 2015, 29(3): 220-230.

[38] ZHOU L, WANG X Y, SUN S, et al. Identification and characterization of naturally occurring DSF-family quorum sensing signal turnover system in the phytopathogen Xanthomonas[J]. Environmental Microbiology, 2015, 17(11): 4646-4658.

[39] XUE D R, TIAN F, YANG F H, et al., Phosphodiesterase EdpX1 promotes Xanthomonas oryzae pv. oryzae virulence, exopolysaccharide production, and biofilm formation[J]. Applied and Environmental Microbiology, 2018, 84(22): e01717-e01718.

[40] SU J, ZOU X, HUANG L, et al. DgcA, a diguanylate cyclase from Xanthomonas oryzae pv. oryzae regulates bacterial pathogenicity on rice[J]. Scientific Reports, 2016, 6(1): 25978.

[41] TAO J, HE C. Response regulator, VemR, positively regulates the virulence and adaptation of Xanthomonas campestris pv. campestris[J]. FEMS Microbiology Letters, 2010, 304(1): 20-28.

[42] SU H Z, WU L, QI Y H, et al. Characterization of the GntR family regulator HpaR1 of the crucifer black rot pathogen Xanthomonas campestris pathovar campestris[J]. Scientific Reports, 2016, 6(1): 19862.

[43] SCHULTE F, LEBMEIER L, VOSS J, et al. Regulatory associations between the metabolism of sulfur-containing amino acids and xanthan biosynthesis in Xanthomonas campestris pv. campestris B100[J]. FEMS Microbiol Letters, 2019, 366(2): fnz005.

[44] QIAN G, ZHANG Y, ZHOU Y, et al. Epv, encoding a hypothetical protein, is regulated by DSF-mediating quorum sensing as well as global regulator Clp and is required for optimal virulence in Xanthomonas oryzae pv. oryzicola[J]. Phytopathology, 2012, 102(9): 841-847.

[45] NGUYEN M P, PARK J, CHO M H, et al. Role of DetR in defense is critical for virulence of Xanthomonas oryzae pv. oryzae[J]. Molecular Plant Pathology, 2016, 17(4): 601-613.

[46] YANG F, QIAN S, TIAN F, et al. The GGDEF-domain protein GdpX1 attenuates motility, exopolysaccharide production, and virulence in Xanthomonas oryzae pv. oryzae[J]. Journal of Applied Microbiology, 2016, 120(6): 1646-1657.

[47] TANG D J, LI X J, HE Y Q, et al. Zinc uptake regulator Zur is essential for the full virulence of Xanthomonas campestris pv. campestris[J]. Molecular Plant-MicrobeInteractions, 2005, 18(7): 652-658.

[48] YANG W, LIU Y, CHEN L, et al. Zinc uptake regulator (zur)gene involved in zinc homeostasis and virulence of Xanthomonas oryzae pv.oryzae in rice[J]. Current Microbiology, 2007, 54(4): 307-314.

[49] LONG J Y, SONG K L, HE X, et al. Mutagenesis of phaR, a regulator gene of polyhydroxyalkanoate biosynthesis of Xanthomonas oryzae pv. oryzae caused pleiotropic phenotype changes[J]. Frontiers in Microbiology, 2018, 9: 3046.

[50] LU G T, TANG Y Q, LI C Y, et al. An adenosine kinase exists in Xanthomonas campestris pathovar campestris and is involved in extracellular polysaccharide production, cell motility, and virulence[J]. Journal of Bacteriology, 2009, 191(11): 3639-3648.

[51] LU G T, YANG Z J, PENG F Y, et al. The role of glucose kinase in carbohydrate utilization and extracellular polysaccharide production in Xanthomonas campestris pathovar campestris[J]. Microbiology, 2007, 153(12): 4284-4294.

[52] LU G T, MA Z F, HU J R, et al. A novel locus involved in extracellular polysaccharide production and virulence of Xanthomonas campestris pathovar campestris[J]. Microbiology, 2007, 153(3): 737-746.

[53] LU G T, XIE J R, CHEN L, et al. Glyceraldehyde-3-phosphate dehydrogenase of Xanthomonas campestris pv. campestris is required for extracellular polysaccharide production and full virulence[J]. Microbiology, 2009, 155(5): 1602-1612.

[54] CHEN L, WANG M, HUANG L, et al. XC_0531encodes a c-type cytochrome biogenesis protein and is required for pathogenesis in Xanthomonas campestris pv.campestris[J]. BMC Microbiology, 2017, 17(1): 142.

[55] GUO W, ZOU L F, CAI L L, et al. Glucose-6-phosphate dehydrogenase is required for extracellular polysaccharide production, cell motility and the full virulence of Xanthomonas oryzae pv. oryzicola[J]. Microbial Pathogenesis, 2015, 78: 87-94.

[56] CAI L L, ZOU L F, LING G E, et al. An inner membrane protein(Imp)of Xanthomonas oryzae pv. oryzicola functions in carbon acquisition, EPS production, bacterial motility and virulence in rice[J]. Journal of Integrative Agriculture, 2014, 13(12): 2656-2668.

[57] POPLAWSKY A R, CHUN W. PigB determines a diffusible factor needed for extracellular polysaccharide slime and xanthomonadin production in Xanthomonas campestris pv. campestris[J]. Journal of Bacteriology, 1997, 179(2): 439-444.

[58] CAO X Q, WANG J Y, ZHOU L, et al. Biosynthesis of the yellow xanthomonadin pigments involves an ATP-dependent 3-hydroxybenzoic acid: acyl carrier protein ligase and an unusual type Ⅱ polyketide synthase pathway[J]. Molecular Microbiology, 2018, 110(1): 16-32.

[59] HE Y W, BOON C, ZHOU L, et al. Co-regulation of Xanthomonas campestris virulence by quorum sensing and a novel two-component regulatory system RavS/RavR[J]. Molecular Microbiology, 2009, 71(6): 1464-1476.

[60] ZHENG D, YAO X, DUAN M, et al. Two overlapping two-component systems in Xanthomonas oryzae pv. oryzae contribute to full fitness in rice by regulating virulence factors expression[J]. Scientific Reports, 2016, 6: 22768.

[61] CHEN L, HU B, QIAN G, et al. Identification and molecular characterization of twin-arginine translocation system (Tat)in Xanthomonas oryzae pv. oryzae strain PXO99[J]. Archives of Microbiology, 2009, 191(2): 163-170.

[62] GE C, HE C. Regulation of the type II secretion structural gene xpsE in Xanthomonas campestris pathovar campestris by the global transcription regulator Clp[J]. Current Microbiology, 2008, 56(2): 122-127.

[63] SOUW P, DEMAIN A L. Nutritional studies on xanthan production by Xanthomonas campestris NRRL B1459[J]. Applied and Environmental Mic

    robiology, 1979, 37(6): 1186-1192.

[64] FUNAHASHI H, YOSHIDA T, TAGUCHI H. Effect of glucose concentrations on xanthan gum production by Xanthomonas campestris[J]. Journal of Fermentation and Bioengineering, 1987, 65(5): 603-606.

[65] DAVIDSON I W. Production of polysaccharide by Xanthomonas campestris in continuous culture[J]. Fems Microbiology Letters, 1978, 3(6): 347-349.

[66] GARCA-OCHOA F, CASAS J A. Viscosity of locust bean (Ceratonia siliqua)gum solutions[J]. Journal of the Science of Food and Agriculture, 1992, 59(1): 97-100.

[67] MORAINE R A, ROGOVIN P. Kinetics of polysaccharide B-1459 fermentation[J]. Biotechnology and Bioengineering, 1966, 8(4): 511-524.

[68] CADMUS M C, KNUTSON C A, LAGODA A A, et al. Synthetic media for production of quality xanthan gum in 20 liter fermentors[J]. Biotechnology and Bioengineering, 2010, 20(7): 1003-1014.

[69] SHU, C H, YANG S T. Effects of temperature on cell growth and xanthan production in batch cultures of Xanthomonas campestris[J]. Biotechnology and Bioengineering, 1990, 35(5): 454-468.

[70] GARCA- OCHOA F, SANTOS V E, ALCN A. Simulation of xanthan gum production by a chemically structured kinetic model[J]. Mathematics and Computers in Simulation, 1996, 42(2-3): 187-195.

邱嘉辉, 何亚文. 微生物胞外多糖黄原胶的应用与研究进展[J]. 激光生物学报, 2019, 28(5): 385. QIU Jiahui, HE Yawen. Advances in Applications and Research of Xanthan Gum[J]. Acta Laser Biology Sinica, 2019, 28(5): 385.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!