发光学报, 2019, 40 (1): 17, 网络出版: 2019-01-19  

压强对GaSb/GaAs量子点形貌各向异性的影响

Effect of Reaction Pressure Onmorphology Anisotropy of GaSb/GaAs Quantum Dots
作者单位
集成光电子学国家重点实验室 吉林大学电子科学与工程学院, 吉林 长春 130012
摘要
采用低压金属有机物化学气相沉积(LP-MOCVD)技术在GaAs(001)衬底上制备GaSb量子点, 研究了反应室压强对改善GaSb/GaAs量子点形貌各向异性的影响。通过Sb表面处理方法, 在GaAs衬底上形成低表面能的Sb-Sb浮层, 实现以界面失配(IMF)生长模式对GaSb量子点诱导生长。用原子力显微镜(AFM)对各样品的量子点形貌进行了表征, 结果表明GaSb量子点形貌各向异性明显且沿[110]方向拉长。在压强条件为10 kPa时, IMF生长模式导致不对称岛的长宽比大于3, 由于低能量(111)侧面的存在, GaSb量子点优先沿[110]方向生长而不是与之垂直的[110]方向。压强降低至4 kPa时量子点密度增大为8.3×109 cm-2, 量子点形貌转变为对称的半球形且长宽比约为1。低的压强降低了吸附原子的扩散激活能从而增大了扩散长度, 可以有效改善GaSb量子点的各向异性。
Abstract
GaSb quantum dots were directly grown on (001) GaAs substrates by metal organic chemical vapor deposition. The effect of reaction chamber pressure on the size anisotropy of GaSb/GaAs quantum dots was analyzed. By the Sb surface treatment, a floating layer of Sb-Sb with low surface energy is formed on a GaAs substrate to achieve growth of GaSb quantum dots with an interfical misfit(IMF) growth mode. The morphologies of GaSb quantum dots were characterized by atomic force microscopy (AFM), and the results showed that the anisotropy of GaSb quantum dots is significant and elongated along the [110] direction. With the reaction pressure of 10 kPa, the aspect ratio of the asymmetric island caused by IMF growth mode is more than 3. Because of the low energy for (111) sidewalls, the GaSb quantum dots preferentially grow up along the [110] direction rather than the [110] direction. When eaction pressure is reduced to 4 kPa, the density of quantum dots increases to 8.3×109 cm-2. The shape of the quantum dots transforms into a symmetrical hemisphere and the aspect ratio is approximately 1. Because the low pressure reduces the activation energy of the atoms and increases the diffusion length, the anisotropy of GaSb quantum dots can be effectively improved.
参考文献

[1] NAINANI A,IRISAWA T,YUAN Z,et al.. Optimization of the Al2O3/GaSb interface and a high-mobility GaSb pMOSFET [J]. IEEE Trans. Elect. Dev., 2011,58(10):3407-3415.

[2] BURKE R A,WENG X J,KUO M W,et al.. Growth and characterization of unintentionally doped GaSb nanowires [J]. J. Electron. Mater., 2010,39(4):355-364.

[3] 张仲义,秦素英,魏相飞. InAs/AlSb/GaSb量子阱中的双色光吸收 [J]. 发光学报, 2017,38(7):930-935.

    ZHANG Z Y,QIN S Y,WEI X F. Two color optical absorption in InAs/AlSb/GaSb quantum well system [J].Chin. J. Lumin., 2017,38(7):930-935. (in Chinese)

[4] 戎佳敏,邢恩博,赵帅,等. 2 μm GaSb基低垂直发散角布拉格反射波导激光器优化设计 [J]. 发光学报, 2015,36(12):1434-1439.

    RONG J M,XING E B,ZHAO S,et al.. Modeling of 2 μm GaSb based bragg reflection waveguide lasers with ultra-low vertical divergence [J]. Chin. J. Lumin., 2015,36(12):1434-1439. (in Chinese)

[5] TATEBAYASHI J,LIANG B L,BUSSIAN D A,et al.. Formation and optical characteristics of type-II strain-relieved GaSb/GaAs quantum dots by using an interfacial misfit growth mode [J]. IEEE Trans. Nanotechnol., 2009,8(2):269-274.

[6] WANG Y,RUTERANA P,KRET S,et al.. The source of the threading dislocation in GaSb/GaAs hetero-structures and their propagation mechanism [J]. Appl. Phys. Lett., 2013,102(5):052102-1-5.

[7] GUTIRREZ M,ARAUJO D,JURCZAK P,et al.. Solid solution strengthening in GaSb/GaAs:a mode to reduce the TD density through Be-doping [J]. Appl. Phys. Lett., 2017,110(9):131911.

[8] WANG Y,RUTERANA P,CHEN J,et al.. Antimony-mediated control of misfit dislocations and strain at the highly lattice mismatched GaSb/GaAs interface [J]. ACS Appl. Mater. Interfaces, 2013,5(19):9760-9764.

[9] TAN K H,JIA B W,LOKE W K,et al.. Formation of interfacial misfit dislocation in GaSb/GaAs heteroepitaxy via anion exchange process [J]. J. Cryst. Growth, 2015,427:80-86.

[10] KIM J H,SEONG T Y,MASON N J,et al.. Morphology and defect structures of GaSb islands on GaAs grown by metalorganic vapor phase epitaxy [J]. J. Electron. Mater., 1998,27(5):466-471.

[11] QIU Y X,LI M C,WANG Y T,et al.. Investigation of GaSb epilayer grown on vicinal GaAs(001) substrate by high resolution X-ray diffraction [J]. Phys. Scr., 2007,129:27-30.

[12] HSIAO C J,HA M T H,HSU C Y,et al.. Growth of ultrathin GaSb layer on GaAs using metal-organic chemical vapor deposition with Sb interfacial treatment [J]. Appl. Phys. Express, 2016,9(9):095502-1-4.

[13] HSIAO C J,HA M T H,LIU C K,et al.. Performance improvement of highly mismatched GaSb layers on GaAs by interfacial-treatment-assisted chemical vapor deposition [J]. J. Mater. Sci. Mater. Electron., 2017,28(1):846-855.

[14] EL KAZZI S,DESPLANQUE L,COINON C,et al.. Compliance at the GaSb/GaP Interface by misfit dislocations array [J]. Adv. Mater. Res., 2011,324:85-88.

[15] BALAKRISHNAN G,TATEBAYASHI J,KHOSHAKHLAGH A,et al.. Ⅲ/Ⅴ ratio based selectivity between strained stranski-krastanov and strain-free GaSb quantum dots on GaAs [J]. Appl. Phys. Lett., 2006,89(16):161104-1-3.

[16] JIANG C,KAWAZU T,KOBAYASHI S,et al.. Molecular beam epitaxial growth of very large lateral anisotropic GaSb/GaAs quantum dots [J]. J. Cryst. Growth, 2007,301-302:828-832.

[17] TIMM R. Formation,Atomic Structure,and Electronic Properties of GaSb Quantum Dots in GaAs [D]. Berlin:Technische Universitt Berlin, 2007.

[18] EL KAZZI S,DESPLANQUE L,WALLART X,et al.. Interplay between Sb flux and growth temperature during the formation of GaSb islands on GaP [J]. J. Appl. Phys., 2012,111(12):123506-1-5.

[19] LI G D,JIANG C,ZHU Q S,et al.. Anisotropic transport of two-dimensional electron gas modulated by embedded elongated GaSb/GaAs quantum dots [J]. Appl. Phys. Lett., 2011,98(3):032103-1-3.

[20] KAWAZU T,NODA T,MANO T,et al.. Effects of Sb/As interdiffusion on optical anisotropy of GaSb quantum dots in GaAs grown by droplet epitaxy [J]. Jpn. J. Appl. Phys., 2012,51(11R):115201.

[21] BRACHT H,NICOLS S P,WALUKIEWICZ W,et al.. Large disparity between gallium and antimony self-diffusion in gallium antimonide [J]. Nature, 2000,408(6808):69-72.

[22] 陆大成,段树坤. 金属有机化合物气相外延基础及应用 [M]. 北京:科学出版社, 2009.

    LU D C,DUAN S K. Organometallic Vapor-phase Epitaxy: Basis and Application [M]. Beijing:Science Press, 2009. (in Chinese)

[23] STRINGFELLOW G B. Organometallic Vapor-phase Epitaxy [M]. 2nd ed. San Diego:Academic Press, 1999.

徐德前, 徐佳新, 庄仕伟, 李国兴, 张宝林. 压强对GaSb/GaAs量子点形貌各向异性的影响[J]. 发光学报, 2019, 40(1): 17. XU De-qian, XU Jia-xin, ZHUANG Shi-wei, LI Guo-xing, ZHANG Bao-lin. Effect of Reaction Pressure Onmorphology Anisotropy of GaSb/GaAs Quantum Dots[J]. Chinese Journal of Luminescence, 2019, 40(1): 17.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!