中国激光, 2016, 43 (5): 0508005, 网络出版: 2016-05-04   

基于夫琅禾费原理的光栅复制拼接误差精度分析

Precision Analysis of Grating Replicated Mosaic Error Based on the Principle of Fraunhofer
作者单位
1 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
2 中国科学院大学, 北京 100049
摘要
复制拼接是天文领域目前制作大面积平面衍射光栅的重要方法之一。光栅复制拼接需要相应的拼接系统,从成本控制和光栅研制周期角度考虑,一套常规拼接系统应适用于不同参数光栅及不同检测波长的拼接,并且系统拼接精度必须满足光栅拼接要求。根据夫琅禾费远场衍射原理,建立双光栅拼接系统的五维误差理论模型,分析了入射光波长、衍射级次、光栅常数、入射角等参数改变时的拼接误差及其变化趋势,并根据实际拼接需求给出了上述参数的变化范围。计算得到了当光栅参数及检测条件变化时能够满足使用要求的拼接误差精度指标。所得出的拼接误差变化趋势及拼接精度指标对于设计复制光栅拼接系统具有指导意义。
Abstract
Replicated mosaic is an important way to make large size plane diffraction grating in astronomy. Considering cost control and grating development cycle, the mosaic system should be applicable to different parameters of grating and different test wavelengths. At the same time, the accuracy of the mosaic system must match the requirement. The mosaic error theory model is established based on the principle of Fraunhofer far field diffraction and the trend is analyzed and simulated when the wavelength of incident light, diffraction order, grating constant, and incident angle are changed. The variable range of above parameters is designed according to the actual mosaic demand. The mosaic error precision which can satisfy the usage requirement is computed when the grating parameters and detection conditions are changed. The simulation results will make a significant guidance for the replicated mosaic system design.
参考文献

[1] Mazzacurati V, Ruocco G. The super-gratings: How to improve the limiting resolution of grating spectrometers[J]. Optics Communications,1990, 76(3-4): 185-190.

[2] Dekker H, D′Odorico S. UVES, the UV-visual echelle spectrograph for the VLT[J]. The Messenger, 1992, 70: 13-17.

[3] Vogt S S, Allen S L, Bigelow B C, et al.. HIRES: The high-resolution echellespectrometer on the Keck 10-mTelescope[C]. SPIE, 1994, 2198: 362-375.

[4] Tull R G. High-resolution fiber-coupled spectrograph of the Hobby-Eberly telescope[C]. Astronomical Telescopes & Instrumentation. International Society for Optics and Photonics, 1998, 3355: 387-398.

[5] Qiao J, Kalb A, Guardalben M J, et al.. Large-aperture grating tiling by interferometry for petawatt chirped-pulse-amplification systems[J]. Optics Express, 2007, 15(15): 9562-9574.

[6] Forget N, Felix C, Baynard E, et al.. Diode-pumped regenerative amplifier front end for the petawatt laser chain at LULI[M]. Ultrafast Optics IV, 2004: 315-320.

[7] Habara H, Xu G, Jitsuno T, et al.. Pulse compression and beam focusing with segmented diffraction gratings in a high-power chirped-pulse amplification glass laser system[J]. Optics Letters, 2010, 35(11): 1783-1785.

[8] 李晓天, 于海利, 齐向东, 等. 光栅刻划机300 mm行程工作台研制及其自适应控制方法[J]. 中国激光, 2014, 41(6): 0608001.

    Li Xiaotian, Yu Haili, Qi Xiangdong, et al.. 300 mm-travel stage of grating ruling engine and its self-adaptive control method[J]. Chinese J Lasers, 2014, 41(6): 0608001.

[9] 钱国林, 吴建宏, 李朝明, 等. 有像差情况下的全息光栅拼接研究[J]. 光学学报, 2015, 35(3): 0305002.

    Qian Guolin, Wu Jianhong, Li Chaoming, et al.. Study of gratings tiled by holographic exposure with wave aberration[J]. Acta Optica Sinica, 2015, 35(3): 0305002.

[10] 姜珊, 巴音贺希格, 潘明忠, 等. 扫描干涉场曝光系统中干涉条纹周期精确测量方法[J]. 光学学报, 2015, 35(7): 0705001.

    Jiang Shan, Bayanheshig, Pan Mingzhong, et al.. An accurate method for measuring interference fringe period in scanning beam interference lithography system[J]. Acta Optica Sinica, 2015, 35(7): 0705001.

[11] 王聪, 张军伟, 杜丽, 等. 光栅拼接技术研究进展[J]. 激光与光电子学进展, 2011, 48(8): 080501.

    Wang Cong, Zhang Junwei, Du Li, et al.. Technology progress of grating tiling[J]. Laser & Optoelectronics Progress, 2011, 48(8): 080501.

[12] Harimoto T. Far-field pattern analysis for an array grating compressor[J]. Japanese Journal of Applied Physics, 2004, 43(4A): 1362-1365.

[13] Hu Y, Zeng L, Li L. Method to mosaic gratings that relies on analysis of far-field intensity patterns in two wavelengths[J]. Optics Communications, 2007, 269(2): 285-290.

[14] Cotel A, Castaing M, Pichon P, et al.. Phased-array grating compression for high-energy chirped pulse amplification lasers[J]. Optics Express, 2007, 15(5): 2742-2752.

[15] Blasiak T, Zheleznyak S. History and construction of large mosaic diffraction gratings[C]. SPIE, 2002, 4485: 370-377.

[16] 梁铨廷. 物理光学[M]. 北京: 电子工业出版社, 2008: 174-184.

    Liang Quanting. Physical optics[M]. Beijing: Publishing House of Electronics Industry, 2008: 174-184.

[17] 巴音贺希格. 衍射光栅色散理论与光栅设计、制作和检测方法研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2004: 43-45.

    Bayanheshig. The Study onthe dispersion theory, design, manufacture, and efficiency test of diffraction gratings[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2004: 43-45.

[18] 王仕璠. 信息光学理论与应用[M]. 北京: 北京邮电大学出版社, 2009: 27-35.

    Wang Shifan. Theory and application of information optics[M]. Beijing: Beijing University of Posts and Telecommunicaitons Press, 2009: 27-35.

[19] 祝绍箕, 邹海兴, 包学诚, 等. 衍射光栅[M]. 北京: 机械工业出版社, 1986: 112-115.

    Zhu Shaoji, Zou Haixing, Bao Xuecheng, et al.. Diffraction gratings[M]. Beijing: China Machine Press, 1986: 112-115.

卢禹先, 齐向东, 于海利, 李晓天, 张善文, 姜珊, 尹禄. 基于夫琅禾费原理的光栅复制拼接误差精度分析[J]. 中国激光, 2016, 43(5): 0508005. Lu Yuxian, Qi Xiangdong, Yu Haili, Li Xiaotian, Zhang Shanwen, Jiang Shan, Yin Lu. Precision Analysis of Grating Replicated Mosaic Error Based on the Principle of Fraunhofer[J]. Chinese Journal of Lasers, 2016, 43(5): 0508005.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!