激光与光电子学进展, 2020, 57 (11): 111430, 网络出版: 2020-06-02  

飞秒激光过饱和掺杂硅基光电探测器研究进展 下载: 1581次特邀综述

Research Progress on Hyperdoped Silicon Photodetectors Fabricated by Femtosecond Laser
作者单位
南开大学弱光非线性光子学教育部重点实验室, 物理科学学院&泰达应用物理研究院, 天津 300071
引用该论文

进晓荣, 吴强, 黄松, 贾子熙, 宋冠廷, 周旭, 姚江宏, 许京军. 飞秒激光过饱和掺杂硅基光电探测器研究进展[J]. 激光与光电子学进展, 2020, 57(11): 111430.

Xiaorong Jin, Qiang Wu, Song Huang, Zixi Jia, Guanting Song, Xu Zhou, Jianghong Yao, Jingjun Xu. Research Progress on Hyperdoped Silicon Photodetectors Fabricated by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111430.

参考文献

[1] Savin H. Repo P, von Gastrow G, et al. Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency[J]. Nature Nanotechnology, 2015, 10(7): 624-628.

[2] 庄东炜, 韩晓川, 李雨轩, 等. 硅基光电子集成光控相控阵的研究进展[J]. 激光与光电子学进展, 2018, 55(5): 050001.

    Zhuang D W, Han X C, Li Y X, et al. Silicon-based optoelectronic integrated optical phased array[J]. Laser & Optoelectronics Progress, 2018, 55(5): 050001.

[3] Sadrozinski H F W. Applications of silicon detectors[J]. IEEE Transactions on Nuclear Science, 2001, 48(4): 933-940.

[4] Roumanie M, Delattre C, Mittler F, et al. Enhancing surface activity in silicon microreactors: use of black silicon and alumina as catalyst supports for chemical and biological applications[J]. Chemical Engineering Journal, 2008, 135: S317-S326.

[5] Striemer C C, Fauchet P M. Dynamic etching of silicon for broadband antireflection applications[J]. Applied Physics Letters, 2002, 81(16): 2980-2982.

[6] Yoo J. Reactive ion etching (RIE) technique for application in crystalline silicon solar cells[J]. Solar Energy, 2010, 84(4): 730-734.

[7] Yuan H, Yost V E, Page M, et al. Efficient black silicon solar cell with a density-graded nanoporous surface: optical properties, performance limitations, and design rules[J]. Applied Physics Letters, 2009, 95(12): 123501.

[8] Steglich M, Oehme M, Käsebier T, et al. Ge-on-Si photodiode with black silicon boosted responsivity[J]. Applied Physics Letters, 2015, 107(5): 051103.

[9] Hu S X, Han P D, Wang S, et al. Improved photoresponse characteristics in Se-doped Si photodiodes fabricated using picosecond pulsed laser mixing[J]. Semiconductor Science and Technology, 2012, 27(10): 102002.

[10] Umezu I, Warrender J M, Charnvanichborikarn S, et al. Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens[J]. Journal of Applied Physics, 2013, 113(21): 213501.

[11] Mailoa J P, Akey A J, Simmons C B, et al. Room-temperature sub-band gap optoelectronic response of hyperdoped silicon[J]. Nature Communications, 2014, 5: 3011.

[12] Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses[J]. Applied Physics Letters, 1998, 73(12): 1673-1675.

[13] Wu C, Crouch C H, Zhao L, et al. Near-unity below-band-gap absorption by microstructured silicon[J]. Applied Physics Letters, 2001, 78(13): 1850-1852.

[14] Carey J E, Crouch C H, Shen M Y, et al. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes[J]. Optics Letters, 2005, 30(14): 1773-1775.

[15] Huang Z H, Carey J E, Liu M G, et al. Microstructured silicon photodetector[J]. Applied Physics Letters, 2006, 89(3): 033506.

[16] Li X, Carey J E, Sickler J, et al. Silicon photodiodes with high photoconductive gain at room temperature[J]. Optics Express, 2012, 20(5): 5518-5523.

[17] 王熙元, 黄永光, 刘德伟, 等. 飞秒激光与准分子激光制作碲掺杂硅探测器[J]. 中国激光, 2013, 40(3): 0302001.

    Wang X Y, Huang Y G, Liu D W, et al. Fabrication of tellurium doped silicon detector by femtosecond laser and excimer laser[J]. Chinese Journal of Lasers, 2013, 40(3): 0302001.

[18] Li C H, Wang X P, Zhao J H, et al. Black silicon IR photodiode supersaturated with nitrogen by femtosecond laser irradiation[J]. IEEE Sensors Journal, 2018, 18(9): 3595-3601.

[19] Carey P G, Sigmon T W. In-situ doping of silicon using the gas immersion laser doping (GILD) process[J]. Applied Surface Science, 1989, 43(1/2/3/4): 325-332.

[20] Winkler M T, Sher M J, Lin Y T, et al. Studying femtosecond-laser hyperdoping by controlling surface morphology[J]. Journal of Applied Physics, 2012, 111(9): 093511.

[21] Crouch C H, Carey J E, Shen M, et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation[J]. Applied Physics A, 2004, 79(7): 1635-1641.

[22] Bucksbaum P H, Bokor J. Rapid melting and regrowth velocities in silicon heated by ultraviolet picosecond laser pulses[J]. Physical Review Letters, 1984, 53(2): 182-185.

[23] Reitano R, Smith P M, Aziz M J. Solute trapping of group III, IV, and V elements in silicon by an aperiodic stepwise growth mechanism[J]. Journal of Applied Physics, 1994, 76(3): 1518-1529.

[24] Sher M, Mangan N M, Smith M J, et al. Femtosecond-laser hyperdoping silicon in an SF6 atmosphere: dopant incorporation mechanism[J]. Journal of Applied Physics, 2015, 117(12): 125301.

[25] Mangan NM. Organization and diffusion in biological and material fabrication problems[D]. Cambridge:Harvard University, 2013.

[26] Lin Y T, Mangan N M, Marbach S, et al. Creating femtosecond-laser-hyperdoped silicon with a homogeneous doping profile[J]. Applied Physics Letters, 2015, 106(6): 062105.

[27] Mott N F, Twose W D. The theory of impurity conduction[J]. Advances in Physics, 1961, 10(38): 107-163.

[28] Mo Y N, Bazant M Z, Kaxiras E. Sulfur point defects in crystalline and amorphous silicon[J]. Physical Review B, 2004, 70(20): 205210.

[29] Shao H Z, Li Y, Zhang J H, et al. Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon[J]. EPL (Europhysics Letters), 2012, 99(4): 46005.

[30] Sánchez K, Aguilera I, Palacios P, et al. Formation of a reliable intermediate band in Si heavily coimplanted with chalcogens (S, Se, Te) and group III elements (B, Al)[J]. Physical Review B, 2010, 82(16): 165201.

[31] Sher M, Mazur E. Intermediate band conduction in femtosecond-laser hyperdoped silicon[J]. Applied Physics Letters, 2014, 105(3): 032103.

[32] Gimpel T, Hoger I, Falk F, et al. Electron backscatter diffraction on femtosecond laser sulfur hyperdoped silicon[J]. Applied Physics Letters, 2012, 101(11): 111911.

[33] Tull B R, Winkler M T, Mazur E. The role of diffusion in broadband infrared absorption in chalcogen-doped silicon[J]. Applied Physics A, 2009, 96(2): 327-334.

[34] Dong X, Li N, Zhu Z, et al. A nitrogen-hyperdoped silicon material formed by femtosecond laser irradiation[J]. Applied Physics Letters, 2014, 104(9): 091907.

[35] 董晓. 飞秒激光氮重掺硅材料的性质及其应用[D]. 上海: 复旦大学, 2014: 45- 65.

    DongX. Properties and applications of the femtosecond laser formed nitrogen-hyperdoped silicon material[D]. Shanghai: Fudan University, 2014: 45- 65.

[36] Du L Y, Wu Z M, Li R, et al. Near-infrared photoresponse of femtosecond-laser processed Se-doped silicon n +-n photodiodes[J]. Optics Letters, 2016, 41(21): 5031-5034.

[37] Li C H, Zhao J H, Chen Q D, et al. Sub-bandgap photo-response of non-doped black-silicon fabricated by nanosecond laser irradiation[J]. Optics Letters, 2018, 43(8): 1710-1713.

[38] Qiu X D, Yu X G, Yuan S, et al. Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping[J]. Advanced Optical Materials, 2018, 6(3): 1700638.

[39] Huang S, Wu Q, Jia Z X, et al. Black silicon photodetector with excellent comprehensive properties by rapid thermal annealing and hydrogenated surface passivation[J]. Advanced Optical Materials, 2020, 8(7): 1901808.

[40] Crouch C H, Carey J E, Warrender J M, et al. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon[J]. Applied Physics Letters, 2004, 84(11): 1850-1852.

[41] Smith M J, Lin Y T, Sher M, et al. Pressure-induced phase transformations during femtosecond-laser doping of silicon[J]. Journal of Applied Physics, 2011, 110(5): 053524.

[42] Casalino M, Coppola G, Iodice M, et al. Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives[J]. Sensors, 2010, 10(12): 10571-10600.

[43] Queisser H J, Haller E. Defects in semiconductors: some fatal, some vital[J]. Science, 1998, 281(5379): 945-950.

[44] Wang X, Zheng H, Tan C, et al. Femtosecond laser induced surface nanostructuring and simultaneous crystallization of amorphous thin silicon film[J]. Optics Express, 2010, 18(18): 19379-19385.

[45] Smith M J, Sher M, Franta B, et al. The origins of pressure-induced phase transformations during the surface texturing of silicon using femtosecond laser irradiation[J]. Journal of Applied Physics, 2012, 112(8): 083518.

[46] Newman B, Sher M, Mazur E, et al. Reactivation of sub-bandgap absorption in chalcogen-hyperdoped silicon[J]. Applied Physics Letters, 2011, 98(25): 251905.

[47] Kim T, Warrender J M, Aziz M J. Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur[J]. Applied Physics Letters, 2006, 88(24): 241902.

[48] Franta B, Pastor D, Gandhi H H, et al. Simultaneous high crystallinity and sub-bandgap optical absorptance in hyperdoped black silicon using nanosecond laser annealing[J]. Journal of Applied Physics, 2015, 118(22): 225303.

[49] Dong X, Li N, Liang C, et al. Strong mid-infrared absorption and high crystallinity of microstructured silicon formed by femtosecond laser irradiation in NF3 atmosphere[J]. Applied Physics Express, 2013, 6(8): 081301.

[50] Alpass C R, Murphy J D, Falster R J, et al. Nitrogen diffusion and interaction with dislocations in single-crystal silicon[J]. Journal of Applied Physics, 2009, 105(1): 013519.

[51] Zhang H X, Stavola M, Seacrist M. Nitrogen-containing point defects in multi-crystalline Si solar-cell materials[J]. Journal of Applied Physics, 2013, 114(9): 093707.

[52] Sun H B, Liang C, Feng G J, et al. Improving crystallinity of femtosecond-laser hyperdoped silicon via co-doping with nitrogen[J]. Optical Materials Express, 2016, 6(4): 1321-1328.

[53] Sun H B, Xiao J M, Zhu S W, et al. Crystallinity and sub-band gap absorption of femtosecond-laser hyperdoped silicon formed in different N-containing gas mixtures[J]. Materials, 2017, 10(4): 351.

[54] Ma S X, Liu X L, Sun H B, et al. Enhanced responsivity of co-hyperdoped silicon photodetectors fabricated by femtosecond laser irradiation in a mixed SF6/NF3 atmosphere[J]. Journal of The Optical Society of America B-Optical Physics, 2020, 37(3): 730-735.

[55] Jia Z X, Wu Q, Jin X R, et al. Highly responsive tellurium-hyperdoped black silicon photodiode with single-crystalline and uniform surface microstructure[J]. Optics Express, 2020, 28(4): 5239-5247.

[56] Sundaram S K, Mazur E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses[J]. Nature Materials, 2002, 1(4): 217-224.

[57] Wang M, Berencén Y, García-Hemme E, et al. Extended infrared photoresponse in Te-Hyperdoped Si at room temperature[J]. Physical Review Applied, 2018, 10(2): 024054.

[58] Du L Y, Yin J, Wen Y Q, et al. Possible excited states in Si∶Se and Si∶Te prepared by femtosecond-laser irradiation of Si coated with Se or Te film[J]. Infrared Physics & Technology, 2020, 104: 103150.

[59] 叶羽婷, 马辉, 孙春雷, 等. 柔性光子材料与器件的研究进展[J]. 激光与光电子学进展, 2020, 57(3): 030001.

    Ye Y T, Ma H, Sun C L, et al. Research progress on flexible photonic materials and devices[J]. Laser & Optoelectronics Progress, 2020, 57(3): 030001.

[60] Sun B Q, Shao M W, Lee S. Nanostructured silicon used for flexible and mobile electricity generation[J]. Advanced Materials, 2016, 28(47): 10539-10547.

[61] Xie C, Yan F. Flexible photodetectors based on novel functional materials[J]. Small, 2017, 13(43): 1701822.

[62] Wang S, Weil B D, Li Y B, et al. Large-area free-standing ultrathin single-crystal silicon as processable materials[J]. Nano Letters, 2013, 13(9): 4393-4398.

[63] Mulazimoglu E, Coskun S, Gunoven M, et al. Silicon nanowire network metal-semiconductor-metal photodetectors[J]. Applied Physics Letters, 2013, 103(8): 083114.

[64] Hossain M, Kumar G S. Barimar Prabhava S N, et al. Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications[J]. ACS Nano, 2018, 12(5): 4727-4735.

[65] Dai Y J, Wang X F, Peng W B, et al. Self-powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro-phototronic effect: an approach for photosensing below bandgap energy[J]. Advanced Materials, 2018, 30(9): 1705893.

[66] Yao G, Pan T S, Yan Z C, et al. Tailoring the energy band in flexible photodetector based on transferred ITO/Si heterojunction via interface engineering[J]. Nanoscale, 2018, 10(8): 3893-3903.

[67] Mei H, Wang C, Yao J, et al. Development of novel flexible black silicon[J]. Optics Communications, 2011, 284(4): 1072-1075.

[68] Jin X R, Sun Y Q, Wu Q, et al. High-performance free-standing flexible photodetectors based on sulfur-hyperdoped ultrathin silicon[J]. ACS Applied Materials & Interfaces, 2019, 11(45): 42385-42391.

[69] Wale MJ. Self aligned, flip chip assembly of photonic devices with electrical and optical connections[C]∥40th Conference Proceedings on Electronic Components and Technology, May 20-23, 1990, Las Vegas, NV, USA, USA, 1990: 3897338.

[70] Leclerc D, Brosson P, Pommereau F, et al. High-performance semiconductor optical amplifier array for self-aligned packaging using Si V-groove flip-chip technique[J]. IEEE Photonics Technology Letters, 1995, 7(5): 476-478.

进晓荣, 吴强, 黄松, 贾子熙, 宋冠廷, 周旭, 姚江宏, 许京军. 飞秒激光过饱和掺杂硅基光电探测器研究进展[J]. 激光与光电子学进展, 2020, 57(11): 111430. Xiaorong Jin, Qiang Wu, Song Huang, Zixi Jia, Guanting Song, Xu Zhou, Jianghong Yao, Jingjun Xu. Research Progress on Hyperdoped Silicon Photodetectors Fabricated by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111430.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!