激光与光电子学进展, 2017, 54 (6): 060002, 网络出版: 2017-06-28   

多色双光子成像技术进展 下载: 1909次

Recent Advances in Multicolor Two-Photon Imaging Technique
崔权 1,2陈忠云 1,2张智红 1,2骆清铭 1,2付玲 1,2
作者单位
1 华中科技大学武汉光电国家实验室(筹)Britton Chance生物医学光子学研究中心, 湖北 武汉 430074
2 华中科技大学生物医学工程系生物医学光子学教育部重点实验室, 湖北 武汉 430074
摘要
双光子荧光显微成像是一种非线性光学显微技术,具有高空间分辨率、高信噪比和固有的三维层析分辨能力等优点。传统的双光子荧光显微成像通常使用波长可调谐的100 fs超短脉冲激光器作为激光光源。目前,人们对双光子荧光显微成像方法进行了深入研究,改进光源及探测方法是常用的手段。介绍和总结了多色双光子荧光显微成像技术的近期研究进展及其在生物医学中的应用。首先介绍了传统飞秒激光器及光学参量振荡器在多色成像中的应用,然后对光纤超连续谱在多色显微成像中的应用进行了分析,最后简要说明了增强自相位调制效应产生连续光谱以及选择性激发实现多色成像的工作。多色双光子成像技术不仅可以同时获取含有多种荧光团的待测样品的高对比度双光子荧光图像,而且具有系统结构简单、操作简便等优点,这使得其在生物医学和材料科学等领域具有广阔的应用前景,并且为生物医学诊断与研究提供了一种有效的工具和平台。
Abstract
Two-photon fluorescence microscopy is a kind of nonlinear optical microscopy, which has the advantages of high time resolution, spatial resolution, high signal to noise ratio and intrinsic three-dimensional ability. Traditional two-photon fluorescence microscopy generally adopts tunable ultra-short pulse laser with pulsewidth of 100 fs as the light source. At present, two-photon fluorescence microscopy is further studied, and light source and detection method improvements are common means. In this paper, we introduce and summarize the recent advances in multicolor two-photon excited fluorescence microscopy and its application in biomedicine. Firstly, traditional application of femtosecond laser and optical parametric oscillator in multicolor imaging is introduced. Secondly, we focus on the application of fiber supercontinuum in multi-color microscopic imaging. Finally, we make a description of our recent work on continuum spectrum generation by enhanced self-phase modulation and selective excitation to achieve multicolor imaging. Multicolor two-photon imaging technology has the advantages of simple set-up, simple operation, and it has been broadly applied in biomedical and material science. Which provides a powerful tool and platformfor biomedical diagnosis and research.
参考文献

[1] Denk W, Strickler J H, Webb W W. Two-photon laser scanning fluorescence microscopy[J]. Science, 1990, 248(4951): 73-76.

[2] Drobizhev M, Makarov N S, Tillo S E, et al. Two-photon absorption properties of fluorescent proteins[J]. Nature Methods, 2011, 8(5): 393-399.

[3] Ye C X, Ma H L, Liang W Z. Two-photon absorption properties of chromophores of a few fluorescent proteins: a theoretical investigation[J]. Acta Physico-Chimica Sinica, 2016, 32: 301-312.

[4] Li C Q, Pitsillides C, Runnels J M, et al. Multiphoton microscopy of live tissues with ultraviolet autofluorescence[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(3): 516-23.

[5] Li D, Zheng W, Qu J Y. Two-photon autofluorescence microscopy of multicolor excitation[J]. Optics Letters, 2009, 34(2): 202-204.

[6] Weber T, Kster R. Genetic tools for multicolor imaging in zebrafish larvae[J]. Methods, 2013, 62(3): 279-291.

[7] Piatkevich K D, Hulit J, Subach O M, et al. Monomeric red fluorescent proteins with a large Stokes shift[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(12): 5369-5374.

[8] Morozova K S, Piatkevich K D, Gould T J, et al. Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy[J]. Biophysical Journal, 2010, 99(2): L13-L15.

[9] Ghosh S, Yu C L, Ferraro D J, et al. Blue protein with red fluorescence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(41): 11513-11518.

[10] Rodriguez E A, Tran G N, Gross L A, et al. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein[J]. Nature Methods, 2016, 13(9): 763-769.

[11] Zhang X, Zhang M S, Li D, et al. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(37): 10364-10369.

[12] 林居强, 陈 荣, 蔡长美, 等. 蛋白酶荧光探针及新型显微成像技术的生物医学应用[J]. 激光与光电子学进展, 2008, 45(4): 50-55.

    Lin Juqiang, Chen Rong, Cai Changmei, et al. Biomedical applications of imaging microscopy based on protease-activated fluorescent probe[J]. Laser & Optoelectronics Progress, 2008, 45(4): 50-55.

[13] Sato M, Kawano M, Yanagawa Y, et al. In vivo two-photon imaging of striatal neuronal circuits in mice[J]. Neurobiology of Learning and Memory, 2016, 135: 146-151.

[14] Tarus D, Hamard L, Caraguel F, et al. Design of hyaluronic acid hydrogels to promote neurite outgrowth in three dimensions[J]. Acs Applied Materials & Interfaces, 2016, 8(38): 25051-25059.

[15] Fumagalli S, Ortolano F, De Simoni M G. A close look at brain dynamics: cells and vessels seen by in vivo two-photon microscopy[J]. Progress in Neurobiology, 2014, 121: 36-54.

[16] Zhou Y, Kang D Y, Yang Z R, et al. Imaging normal and cancerous human gastric muscular layer in transverse and longitudinal sections by multiphoton microscopy[J]. Scanning, 2016, 38(4): 357-364.

[17] Li L H, Chen Z F, Wang X F, et al. Visualization of tumor response to neoadjuvant therapy for rectal carcinoma by nonlinear optical imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 22(3): 158-163.

[18] Zhao Z, Zhu X P, Cui K, et al. In vivo visualization and characterization of epithelial-mesenchymal transition in breast tumors[J]. Cancer Research, 2016, 76(8): 2094-2104.

[19] 喻碧莺, 蔡吓妹, 李志芳, 等. 大鼠早期急性心肌缺血的双光子荧光成像及分析[J]. 激光与光电子学进展, 2012, 49(2): 021703.

    Yu Biying, Cai Hemei, Li Zhifang, et al. Two-photon fluorescence imaging and its analysis for early acute myocardial ischemia of rat[J]. Laser & Optoelectronics Progress, 2012, 49(2): 021703.

[20] 魏勋斌, 郭 进, 李 研, 等. 光学活体成像技术进展[J]. 激光与光电子学进展, 2009, 46(8): 41-47.

    Wei Xunbin, Guo Jin, Li Yan, et al. Progress of in vivo optical imaging[J]. Laser & Optoelectronics Progress, 2009, 46(8): 41-47.

[21] Katakai T, Kinashi T. Microenvironmental control of high-speed interstitial T cell migration in the lymph node[J]. Frontiers in Immunology, 2016, 7: 1-8.

[22] Luu L, Coombes J L. Dynamic two-photon imaging of the immune response to Toxoplasma gondii infection[J]. Parasite Immunology, 2015, 37(3): 118-126.

[23] Miller M J, Wei S H, Parker I, et al. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node[J]. Science, 2002, 296(5574): 1869-1873.

[24] Ipponjima S, Hibi T, Nemoto T. Three-dimensional analysis of cell division orientation in epidermal basal layer using intravital two-photon microscopy[J]. Plos One, 2016, 11(9): e0163199.

[25] Finnoy A, Olstad K, Lilledahl M B. Second harmonic generation imaging reveals a distinct organization of collagen fibrils in locations associated with cartilage growth[J]. Connective Tissue Research, 2016, 57: 374-387.

[26] Alonzo C A, Karaliota S, Pouli D, et al. Two-photon excited fluorescence of intrinsic fluorophores enables label-free assessment of adipose tissue function[J]. Scientific Reports, 2016, 6: 31012.

[27] Zhang X Z, Liu N R, Mak P U, et al. Three-dimensional segmentation and quantitative measurement of the aqueous outflow system of intact mouse eyes based on spectral two-photon microscopy techniques[J]. Investigative Ophthalmology & Visual Science, 2016, 57(7): 3159-3167.

[28] Santisakultarm T P, Kersbergen C J, Bandy D K, et al. Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets[J]. Journal of Neuroscience Methods, 2016, 271: 55-64.

[29] Kawano H, Kogure T, Abe Y, et al. Two-photon dual-color imaging using fluorescent proteins[J]. Nature Methods, 2008, 5(5): 373-374.

[30] Germain R N, Miller M J, Dustin M L, et al. Dynamic imaging of the immune system: progress, pitfalls and promise[J]. Nature Reviews Immunology, 2006, 6(7): 497-507.

[31] Tragardh J, Murtagh M, Robb G, et al. Two-color, two-photon imaging at long excitation wavelengths using a diamond raman laser[J]. Microscopy and Microanalysis, 2016, 22(4): 803-807.

[32] Ricard C, Lamasse L, Jaouen A, et al. Combination of an optical parametric oscillator and quantum-dots 655 to improve imaging depth of vasculature by intravital multicolor two-photon microscopy[J]. Biomedical Optics Express, 2016, 7(6): 2362-2372.

[33] Herz J, Siffrin V, Hauser A E, et al. Expanding two-photon intravital microscopy to the infrared by means of optical parametric oscillator[J]. Biophysical Journal, 2010, 98(4): 715-723.

[34] Eissing N, Heger L, Baranska A, et al. Easy performance of 6-color confocal immunofluorescence with 4-laser line microscopes[J]. Immunology Letters, 2014, 161(1): 1-5.

[35] Debarre D, Olivier N, Supatto W, et al. Mitigating phototoxicity during multiphoton microscopy of live drosophila embryos in the 1.0-1.2 μm wavelength range[J]. Plos One, 2014, 9(8): e104250.

[36] Hall A M, Molitoris B A. Dynamic multiphoton microscopy: focusing light on acute kidney injury[J]. Physiology, 2014, 29(5): 334-342.

[37] Freeman K, Tao W, Sun H L, et al. In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-photon excitation fluorescence imaging[J]. Journal of Neuroscience Methods, 2014, 221(2): 48-61.

[38] Entenberg D, Wyckoff J, Gligorijevic B, et al. Setup and use of a two-laser multiphoton microscope for multichannel intravital fluorescence imaging[J]. Nature Protocols, 2011, 6(10): 1500-1520.

[39] Li C Q, Pastila R K, Lin C P. Label-free imaging immune cells and collagen in atherosclerosis with two-photon and second harmonic generation microscopy[J]. Journal of Innovative Optical Health Sciences, 2016, 9(1): 272.

[40] Yamanaka M, Saito K, Smith N I, et al. Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging[J]. Journal of Biomedical Optics, 2015, 20(10): 101202.

[41] Mahou P, Zimmerley M, Loulier K, et al. Multicolor two-photon tissue imaging by wavelength mixing[J]. Nature Methods, 2012, 9(8): 815-818.

[42] Brenner M H, Cai D, Swanson J A, et al. Two-photon imaging of multiple fluorescent proteins by phase-shaping and linear unmixing with a single broadband laser[J]. Optics Express, 2013, 21(14): 17256-17264.

[43] Batista A, Breunig H G, Uchugonova A, et al. Two-photon autofluorescence lifetime and SHG imaging of healthy and diseased human corneas[C]. SPIE, 2015, 9307: 93071Q.

[44] Pope I, Langbein W, Watson P, et al. Simultaneous hyperspectral differential-CARS, TPF and SHG microscopy with a single 5 fs Ti∶Sa laser[J]. Optics Express, 2013, 21(6): 7096-7106.

[45] Pestov D, Xu B W, Li H W, et al. Delivery and characterization of sub-8fs laser pulses at the imaging plane of a two-photon microscope[C]. SPIE, 2011, 7903(1): 79033B.

[46] Pillai R S, Boudoux C, Labroille G, et al. Multiplexed two-photon microscopy of dynamic biological samples with shaped broadband pulses[J]. Optics Express, 2009, 17(15): 12741-12752.

[47] 崔 权, 梁小宝, 黄 顺, 等. 超连续谱进行多色双光子成像[J]. 激光生物学报, 2015, 24(1): 1-7.

    Cui Quan, Liang Xiaobao, Huang Shun, et al. Supercontinuum for multicolor two-photon microscopy[J]. Acta Laser Biology Sinica, 2015, 24(1): 1-7.

[48] 汪 洁, 林 峰. 基于光纤的双光子激光扫描荧光微内窥镜的新进展[J]. 激光与光电子学进展, 2010, 47(8): 38-44.

    Wang Jie, Lin Feng. Progress of two-photon laser scanning fluorescence microendoscope based on optical fiber[J]. Laser & Optoelectronics Progress, 2010, 47(8): 38-44.

[49] Liang X B, Fu L. Enhanced self-phase modulation enables a 700-900 nm linear compressible continuum for multicolor two-photon microscopy[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(2): 42-49.

[50] Tu H H, Boppart S A. Coherent fiber supercontinuum for biophotonics[J]. Laser & Photonics Reviews, 2013, 7(5): 628-645.

[51] Graf B W, Jiang Z, Tu H H, et al. Dual-spectrum laser source based on fiber continuum generation for integrated optical coherence and multiphoton microscopy[J]. Journal of Biomedical Optics, 2009, 14 (3): 034019.

[52] Lefort C, O′Connor R P, Blanquet V, et al. Multicolor multiphoton microscopy based on a nanosecond supercontinuum laser source[J]. Journal of Biophotonics, 2016, 9(7): 709-714.

[53] He J P, Miyazaki J, Wang N, et al. Biological imaging with nonlinear photothermal microscopy using a compact supercontinuum fiber laser source[J]. Optics Express, 2015, 23(8): 9762-9771.

[54] Tao W, Bao H C, Gu M. Two-photon-excited photoluminescence and heating of gold nanorods through absorption of supercontinuum light[J]. Applied Physics B, 2013, 112(2): 153-158.

[55] Liu Y, Tu H H, Benalcazar W A, et al. Multimodal nonlinear microscopy by shaping a fiber supercontinuum from 900 to 1160 nm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(3): 1209-1214.

[56] Teh S K, Zheng W, Li S X, et al. Multimodal nonlinear optical microscopy improves the accuracy of early diagnosis of squamous intraepithelial neoplasia[J]. Journal of Biomedical Optics, 2013, 18(3): 036001.

[57] Wang K, Liu T M, Wu J W, et al. Three-color femtosecond source for simultaneous excitation of three fluorescent proteins in two-photon fluorescence microscopy[J]. Biomedical Optics Express, 2012, 3(9): 1972-1977.

[58] He J P, Wang N, Kobayashi T. Generation of stable two-color laser pulses in photonic crystal fiber for microscopy[J]. Japanese Journal of Applied Physics, 2014, 53(9): 092704.

[59] Chan M C, Lien C H, Lu J Y, et al. High power NIR fiber-optic femtosecond Cherenkov radiation and its application on nonlinear light microscopy[J]. Optics Express, 2014, 22(8): 9498-9507.

[60] Palero J A, Boer V O, Vijverberg J C, et al. Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source[J]. Optics Express, 2005, 13(14): 5363-5368.

[61] Tragardh J, Robb G, Amor R, et al. Exploration of the two-photon excitation spectrum of fluorescent dyes at wavelengths below the range of the Ti∶Sapphire laser[J]. Journal of Microscopy, 2015, 259(3): 210-218.

[62] Botchway S W, Scherer K M, Hook S, et al. A series of flexible design adaptations to the Nikon E-C1 and E-C2 confocal microscope systems for UV, multiphoton and FLIM imaging[J]. Journal of Microscopy, 2015, 258(1): 68-78.

[63] Makarov N S, Drobizhev M, Rebane A. Two-photon absorption standards in the 550-1600 nm excitation wavelength range[J]. Optics Express, 2008, 16(6): 4029-4047.

[64] Garini Y, Young I T, Mc Namara G. Spectral imaging: principles and applications[J]. Cytometry Part A, 2006, 69A(8): 735-747.

[65] Zhou L L, El-Deiry W S. Multispectral fluorescence imaging[J]. Journal of Nuclear Medicine, 2009, 50(10): 1563-1566.

[66] Akbari H, Halig L V, Schuster D M, et al. Hyperspectral imaging and quantitative analysis for prostate cancer detection[J]. Journal of Biomedical Optics, 2012, 17(7): 076005.

[67] Elliott A D, Gao L, Ustione A, et al. Real-time hyperspectral fluorescence imaging of pancreatic beta-cell dynamics with the image mapping spectrometer[J]. Journal of Cell Science, 2012, 125(20): 4833-4840.

[68] Kiyotoki S, Nishikawa J, Okamoto T, et al. New method for detection of gastric cancer by hyperspectral imaging: a pilot study[J]. Journal of Biomedical Optics, 2013, 18(2): 026010.

[69] Mori M, Chiba T, Nakamizo A, et al. Intraoperative visualization of cerebral oxygenation using hyperspectral image data: a two-dimensional mapping method[J]. International Journal of Computer Assisted Radiology and Surgery, 2014, 9(6): 1059-1072.

[70] He S C, Ye C, Sun Q Q, et al. Label-free nonlinear optical imaging of mouse retina[J]. Biomedical Optics Express, 2015, 6(3): 1055-1066.

[71] Palero J A, Bader A N, de Bruijn H S, et al. In vivo monitoring of protein-bound and free NADH during ischemia by nonlinear spectral imaging microscopy[J]. Biomedical Optics Express, 2011, 2(5): 1030-1039.

[72] Liang X B, Hu W Y, Fu L. Pulse compression in two-photon excitation fluorescence microscopy[J]. Optics Express, 2010, 18(14): 14893-14904.

[73] Xu B W, Gunn J M, Dela Cruz J M, et al. Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses[J]. Journal of the Optical Society of America B, 2006, 23(4): 750-759.

[74] Patas A, Achazi G, Hermes N, et al. Contrast optimization of two-photon processes after a microstructured hollow-core fiber demonstrated for dye molecules[J]. Applied Physics B, 2013, 112(4): 579-586.

[75] Silberberg Y. Quantum coherent control for nonlinear spectroscopy and microscopy[J]. Annual Review of Physical Chemistry, 2009, 60: 277-292.

崔权, 陈忠云, 张智红, 骆清铭, 付玲. 多色双光子成像技术进展[J]. 激光与光电子学进展, 2017, 54(6): 060002. Cui Quan, Chen Zhongyun, Zhang Zhihong, Luo Qingming, Fu Ling. Recent Advances in Multicolor Two-Photon Imaging Technique[J]. Laser & Optoelectronics Progress, 2017, 54(6): 060002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!