中国激光, 2016, 43 (11): 1101003, 网络出版: 2016-11-10  

激光阶梯刻蚀法制备45°微反射镜及垂直耦合研究

Research on Fabrication and Vertical Coupling of 45° Micromirror with Laser Stepped Ablation Method
作者单位
1 上海大学特种光纤与光接入网省部共建重点实验室, 上海 200072
2 上海大学通信与信息工程学院, 上海 200072
摘要
提出了一种基于准分子激光制备45°微反射镜的新方法──激光阶梯刻蚀法,介绍了该方法的工艺流程。通过优化参数制备了微反射镜样品,详细分析了样品参数对微镜反射性能的影响。利用微反射镜样品进行垂直耦合实验,深入讨论了影响系统损耗的主要因素。实验结果表明,微反射镜样品造成的损耗约为3.5 dB。该制备方法有望在大尺寸光波导互连背板耦合器件的研制中得到广泛应用。
Abstract
One method to fabricate 45° micromirror based on the excimer laser, namely, the laser stepped ablation method, is proposed and its fabrication process is introduced. Via the parameter optimization, micromirror samples are obtained, and the influences of sample parameters on the reflecting performance of micromirrors are analyzed in detail. A vertical coupling experiment is conducted with these micromirror samples. The main factors that affect the system loss are discussed deeply. The experimental results indicate that the loss induced by micromirrors is approximated to 3.5 dB. The fabrication technique proposed is expected to be widely applied in the fabrication of coupling components of large size optical waveguide interconnection backplane.
参考文献

[1] Matsui J, Yamamoto T, Tanaka K, et al. Optical interconnect architecture for servers using high bandwidth optical mid-plane[C]. Optical Fiber Communication Conference, 2012: OW3J. 6.

[2] Taubenblatt M A. Optical interconnects for high-performance computing[J]. Journal of Lightwave Technology, 2012, 30(4): 448-458.

[3] Kachris C, Tomkos I. A survey on optical interconnects for data centers[J]. IEEE Communications Surveys & Tutorials, 2012, 14(4): 1021-1036.

[4] Ghiasi A. Large data centers interconnect bottlenecks[J]. Optics Express, 2015, 23(3): 2085-2090.

[5] Dangel R, Horst F, Jubin D, et al. Development of versatile polymer waveguide flex technology for use in optical interconnects[J]. Journal of Lightwave Technology, 2013, 31(24): 3915-3926.

[6] Tan M R, Rosenberg P K, Mathai S, et al. Low cost, injection molded 120 Gbps optical backplane[C]. Optical Fiber Communication Coference/National Fiber Optical Engineers Conference, 2011: PDPA4.

[7] Rho B S, Kang S, Cho H S, et al. PCB-compatible optical interconnection using 45-ended connection rods and via-holed waveguides[J]. Journal of Lightwave Technology, 2004, 22(9): 2128-2134.

[8] van Steenberge G, Geerinck P, van Put S, et al. MT-compatible laser-ablated interconnections for optical printed circuit boards[J]. Journal of Lightwave Technology, 2004, 22(9): 2083-2090.

[9] van Erps J, Hendrickx N, Debaes C, et al. Discrete out-of-plane coupling components for printed circuit board-level optical interconnections[J]. IEEE Photonics Technology Letters, 2007, 19(21): 1753-1755.

[10] Hendrickx N, van Erps J, Bosman E, et al. Embedded micromirror inserts for optical printed circuit boards[J]. IEEE Photonics Technology Letters, 2008, 20(20): 1727-1729.

[11] Bierhoff T, Schrage J, Halter M, et al. All optical pluggable board-backplane interconnection system based on an MPXTM-FlexTail connector solution[C].2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM), 2010: 91-92.

[12] Cho M H, Hwang S H, Cho H S, et al. High-coupling-efficiency optical interconnection using a 90°-bent fiber array connector in optical printed circuit boards[J]. IEEE Photonics Technology Letters, 2005, 17(3): 690-692.

[13] Taillaert D, van Laere F, Ayre M, et al. Grating couplers for coupling between optical fibers and nanophotonic waveguides[J]. Japanese Journal of Applied Physics, 2006, 45(8A): 6071-6077.

[14] Yoshimura R, Hikita M, Usui M, et al. Polymeric optical waveguide films with 45° mirrors formed with a 90° V-shaped diamond blade[J]. Electron Letters, 1997, 33(15): 1311-1312.

[15] Cho I K, Lee W J, Rho B S, et al. Polymer waveguide with integrated reflector mirrors for an inter-chip link system[J]. Optics Communications, 2008, 281(19): 4906-4909.

[16] Kim J S, Kim J J. Fabrication of multimode polymeric waveguides and micromirrors using deep X-ray lithography[J]. IEEE Photonics Technology Letters, 2004, 16(3): 798-800.

[17] Wang F T, Liu F H, Adibi A. 45 degree polymer micromirror integration for board-level three-dimensional optical interconnects[J]. Optics Express, 2009, 17(13): 10514-10521.

[18] Hendrickx N, van Erps J, van Steenberge G, et al. Laser ablated micromirrors for printed circuit board integrated optical interconnections[J]. IEEE Photonics Technology Letters, 2007, 19(11): 822-824.

[19] 贾娜娜, 邓传鲁, 庞拂飞, 等. 光波导端面的准分子激光刻蚀技术研究[J]. 中国激光, 2015, 42(3): 0303012.

    Jia Nana, Deng Chuanlu, Pang Fufei, et al. Research on excimer laser etching technology for achieving optical waveguide end face[J]. Chinese J Lasers, 2015, 42(3): 0303012.

[20] Zakariyah S S. Laser ablation for polymer waveguide fabrication[D]. Loughborough: Loughborough Innovation Centre, 2012.

[21] 田来科, 滕 霖. 角度与光散射[J]. 光子学报, 1997, 26(11): 1028-1030.

    Tian Laike, Teng Lin. Angle and light scattering[J]. Acta Photonica Sinica, 1997, 26(11): 1028-1030.

[22] Hu J J, Feng N N, Carlie N, et al. Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow[J]. Optics Express, 2010, 18(2): 1469-1478.

邓传鲁, 宋志强, 庞拂飞, 王建辉, 王廷云. 激光阶梯刻蚀法制备45°微反射镜及垂直耦合研究[J]. 中国激光, 2016, 43(11): 1101003. Deng Chuanlu, Song Zhiqiang, Pang Fufei, Wang Jianhui, Wang Tingyun. Research on Fabrication and Vertical Coupling of 45° Micromirror with Laser Stepped Ablation Method[J]. Chinese Journal of Lasers, 2016, 43(11): 1101003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!