中国激光, 2016, 43 (2): 0202001, 网络出版: 2016-01-25   

高效率ArF 准分子激光复合腔技术研究

Compound Cavity ArF Excimer Laser with High Efficiency
范元媛 1,2,*周翊 1,2刘广义 1,2宋兴亮 1,2单耀莹 1,2王倩 1,2赵江山 1,2
作者单位
1 中国科学院光电研究院, 北京 100094
2 北京市准分子激光工程技术研究中心, 北京 100094
摘要
短波长、高光子能量的ArF 准分子激光在集成电路光刻、材料加工、激光医学等领域具有重要的应用。结合线宽压窄技术方案设计了193 nm ArF 准分子激光器复合腔结构,理论分析了复合腔结构能量提升的原理。针对准分子激光器的长腔特性,提出了实现其复合腔窄带激光模式锁定的解决方案,并进行了实验验证。与通常插入色散元件的单窄带腔相比,锁定后的准分子激光复合腔在输出线宽基本不变的情况下能量提高了4.02 倍,激光效率大幅提升,能量稳定性也大幅优化。
Abstract
ArF excimer lasers characterized by short wavelength and high photon energy have important applications in the field of integrated circuit lithography, material processing, laser medicine, and so on. Structure of the compound cavity 193 nm ArF excimer laser is designed based on the linewidth narrowing techniques. Principles of the compound cavity laser are theoretically analyzed. Based on the characteristics of long cavity length in excimer laser system, the solutions for achieving effective mode-locking in compound cavity are proposed and experimentally verified. The laser output with nearly the same linewidth as the narrow-band cavity with dispersive elements and 4.02 times large energy is obtained. The laser efficiency and the energy stability are greatly improved as well.
参考文献

[1] 刘晶儒, 易爱平, 胡志云, 等. 准分子激光技术及应用[M]. 北京: 国防工业出版社, 2009: 227-229.

    Liu Jingru, Yi Aiping, Hu Zhiyun, et al.. Excimer Laser Technology and Applications[M]. Beijing: National Defense Industry Press, 2009: 227-229.

[2] N G Basov, V A Danilychev, Yu M Popov, et al.. Laser operating in the vacuum region of the spectrum by excitation of liquid xenon with an electron beam[J]. JETP Lett, 1970, 12(10): 329-331.

[3] 陈进新, 徐向宇, 王宇. ArF 准分子激光光源电极系统设计及电场仿真研究[J]. 激光与光电子学进展, 2014, 51(1): 011402.

    Chen Jinxin, Xu Xiangyu, Wang Yu. Electrodes system design and electric field simulation research of ArF excimer laser [J]. Laser & Optoelectronics Progress, 2014, 51(1): 011402.

[4] 贾娜娜, 邓传鲁, 庞拂飞, 等. 光波导端面的准分子激光刻蚀技术研究[J]. 中国激光, 2015, 42(3): 0303012.

    Jia Nana, Deng Chuanlu, Pang Fufei, et al.. Research on excimer laser etching technology for achieving optical waveguide end face[J]. Chinese J Lasers, 2015, 42(3): 0303012.

[5] D J Elliott, U K Sengupta. Excimer lasers for deep UV lithography[C]. SPIE, 1991, 1377: 6-17.

[6] P Lokai, U Rebhan, P Oesterl, et al.. High repetition-rate KrF lithography excimer laser with narrow bandwidth below 2 pm[C]. SPIE, 1990, 1264: 496-504.

[7] T Ito, S Okazaki. Pushing the limits of lithography[J]. Nature, 2000, 406(6799): 1027-1031.

[8] T J Mckee. Spectral-narrowing techniques for excimer laser oscillators[J]. Can J Phys, 1985, 63(2): 214-219.

[9] T Ishihara, H Besaucele, C A Maley, et al.. Long- term reliable operation of a MOPA- based ArF light source for microlithography[C]. SPIE, 2004, 5377: 1858-1865.

[10] 许祖彦, 潘少华, 邓道群, 等. 脉冲染料激光的复合腔调频[J]. 物理学报, 1981, 30(6): 820-826.

    Xu Zuyan, Pan Shaohua, Deng Daoqun, et al.. Tuning of a pulsed dye laser using a compound cavity[J]. Acta Physica Sinica, 1981, 30(6): 820-826.

[11] Y F Kong, Z Y Xu, Y Zhou, et al.. The compound cavity optical parametric oscillator: theory and experiment[J]. IEEE Journal of Quantum Electronics, 1998, 34(3): 439-446.

[12] 吴月婷, 范元媛, 刘广义, 等. 高能窄带激光系统中光谱纯度检测的实验研究[J]. 激光与光电子学进展, 2015, 52(7): 073002.

    Wu Yueting, Fan Yuanyuan, Liu Guangyi, et al.. Experimental study on spectral purity detecting in high-energy narrowlinewidth laser system[J]. Laser & Optoelectronics Progress, 2015, 52(7): 073002.

[13] H B Zhang, Z J Yuan, J Zhou, et al.. Effects of prism beam expander and slits on excimer laser linewidth narrowing module [J]. Chin Opt Lett, 2013, 11(4): 041405.

[14] 张海波, 楼祺洪, 周军, 等. ArF 准分子激光器线宽压窄技术[J]. 激光与光电子学进展, 2009, 46(12): 46-51.

    Zhang Haibo, Lou Qihong, Zhou Jun, et al.. ArF excimer laser line narrowing technique[J]. Laser & Optoelectronics Progress, 2009, 46(12): 46-51.

[15] 单耀莹, 赵江山, 李慧, 等. 熔融石英棱镜在准分子激光光谱控制系统中的应用研究[J]. 中国激光, 2013, 40(4): 0402008.

    Shan Yaoying, Zhao Jiangshan, Li Hui, et al.. Application study on fused silica prisms in excimer laser spectrum control[J]. Chinese J Lasers, 2013, 40(4): 0402008.

[16] 郁道银, 谈恒英. 工程光学[M]. 第3 版, 北京: 机械工程出版社, 2011: 306-307.

    Yu Daoyin, Tan Hengying. Engineering Optics[M]. 3rd edition, Beijing: China Machine Press, 2011: 306-307.

[17] A J Merriam, G Y Yin. Efficient self-seeding of a pulsed Ti3+:Al2O3 laser[J]. Opt Lett, 1998, 23(13): 1034-1036.

[18] W Koechner. Solid State Laser Engineering[M]. Springer-Verlag Press, 1988.

范元媛, 周翊, 刘广义, 宋兴亮, 单耀莹, 王倩, 赵江山. 高效率ArF 准分子激光复合腔技术研究[J]. 中国激光, 2016, 43(2): 0202001. Fan Yuanyuan, Zhou Yi, Liu Guangyi, Song Xingliang, Shan Yaoying, Wang Qian, Zhao Jiangshan. Compound Cavity ArF Excimer Laser with High Efficiency[J]. Chinese Journal of Lasers, 2016, 43(2): 0202001.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!