作者单位
摘要
吉林大学生物与农业工程学院, 吉林 长春 130022
小麦是我国的主要粮食作物之一, 对国民经济发展具有显著的影响。 然而, 高温与紫外线胁迫导致其产量大幅下降。 胁迫发生时, 细胞壁内多糖物质会发生不同程度的转变。 作为此类多糖重要组成成分的果胶, 在决定细胞间孔隙度、 识别病菌、 维持结构完整等方面扮演着重要角色。 当前, 常见的果胶检测方法有重量法、 滴定法、 酸提取法等, 这些方法多为有损检测, 测定步骤繁琐, 样本损耗量大。 近年来, 光谱检测因其检测速度快、 分辨率高、 实时性强等优点, 在植物生理信息检测领域得到了广泛应用。 因此, 研究采用光谱检测果胶含量。 以济麦22为研究对象, 采取水培方式, 通过调控人工气候培养箱温度及紫外线灯辐照强度对小麦生长过程中遇到的高温及紫外线胁迫环境进行模拟; 在小麦分蘖期, 分别采集叶片高光谱数据与叶绿素荧光光谱数据, 测定叶片果胶含量, 通过小波分析方法对两种原始光谱数据进行平滑与降噪处理, 采用相关系数分析法得到两种光谱数据与果胶含量相关系数最高的重合波段(620, 651), 取该波段内两光谱数据平均值, 重塑双光谱曲线; 按照3∶1比例划分训练集和验证集, 采用PLS最小二乘法分别建立高光谱反演果胶模型、 荧光光谱反演果胶模型及双光谱反演果胶模型。 结果表明: 双光谱模型反演的小麦叶片果胶含量效果较好, 对应模型的训练集与验证集相关系数分别为0.944 9及0.944 5。 该研究有助于探究逆境胁迫下小麦细胞壁内多糖物质响应情况, 并为大田作物所处胁迫环境和程度的预测及种植环境的精准管控提供参考和帮助。
小麦 光谱技术 果胶 高温胁迫 紫外线胁迫 模型预测 Wheat Spectral technology Pectin High tempurature stress Ultraviolet stress Model predicton 
光谱学与光谱分析
2023, 43(9): 2705
作者单位
摘要
吉林大学生物与农业工程学院, 吉林 长春 130022
小麦是我国的主要粮食作物, 在国民经济发展中具有举足轻重的地位。 然而, 盐与物理损伤等非生物胁迫, 逐渐成为制约小麦产量和品质的重要因素。 研究表明, 细胞壁是植物细胞直接抵御逆境胁迫的重要防线。 盐胁迫下, 细胞渗透压增大, 质膜的透性会受到一定程度的影响。 为了维持细胞的形态和结构, 植物细胞壁中的果胶等多糖物质会发生不同程度的转化和改变。 物理损伤, 会加深植物细胞膜脂过氧化的程度, 使膜通透性增大, 导致营养物质的流失和降解。 受到损伤的部位及其周边细胞还会发生栓化以阻塞病菌的侵入。 构成植物细胞壁主要成分且能够反映细胞壁以及膜系统完整性和透过性的果胶, 可以作为研究胁迫下植物内部物质响应规律的重要指标。 目前, 质量法、 比色法、 液相色谱法等常用的果胶检测方法操作繁琐、 实时性不强且对样本损耗较大。 亟需一种操作简便、 检测速度快、 无损的检测方法。 将烟农0428小麦作为研究对象, 采用水培方式, 以向培养液中施加氯化钠(NaCl)溶液和对小麦第一片叶主脉两侧针刺分别模拟盐胁迫和昆虫叮咬造成的物理损伤, 并完成小麦叶片果胶及高光谱信息的采集与处理。 利用相关分析法筛选光谱敏感波段, 将主成分回归(PCR)、 偏最小二乘法(PLS)、 逐步多元线性回归(SMLR)三种建模方法分别与多元散射校正(MSC)、 标准正态变换(SNV)、 一阶导数(FD)、 卷积平滑(S-G)、 Norris导数滤波(NDF)等预处理技术相结合, 建立果胶含量反演模型。 最终, 选定PLS+SNV+FD+NDF方法建立的模型为最优模型, 并对其性能进行了测试。 结果表明: 果胶含量的预测值与实测值一致性较高, 拟合系数(R2)和均方根误差(RMSE)分别为0.997 6和0.35; 预测值重复性较好, 相对标准偏差(RSD)为1.2%。 该研究以新方法实现小麦果胶的高精度、 快速、 无损检测, 有助于小麦响应逆境胁迫机理的深入探索, 并为大田作物胁迫程度预测及种植环境的精准管控提供参考。
小麦 高光谱技术 果胶 盐胁迫 物理损伤 模型预测 Wheat Hyperspectral technique Pectin Salt stress Physical damage Model prediction 
光谱学与光谱分析
2022, 42(9): 2935
作者单位
摘要
吉林大学生物与农业工程学院, 吉林 长春 130022
光温环境胁迫是影响作物优质高产的一个主要制约因素, 传统的作物胁迫监测, 敏锐性不足、 耗时费力且多为有损检测。 近年来随着信息技术的快速发展, 高光谱技术能够快速无损的获取作物生理信息, 并对逆境胁迫响应进行动态监测, 为现代农业的精准化生产和智能化决策提供了数字化支撑, 对实现传统农业向精准化、 数字化的现代农业转变具有重要意义。 以玉米苗期为研究对象, 获取不同光温环境下叶片的高光谱数据和生理参数, 探究玉米苗期叶片对不同光温环境的响应规律, 进行高光谱差异性分析, 并构建生理参数的高光谱反演模型。 利用相关分析法筛选光谱敏感波段, 采用多元散射校正(MSC)、 标准正态变量变换(SNV)、 Savitzky-Golaay(S-G)平滑相结合的预处理方法, 分别与偏最小二乘回归法(PLS)、 主成分回归法(PCR)、 逐步多元线性回归法(SMLR)三种建模方法组合, 以模型相关系数和均方根误差作为模型效果评价指标, 探索高光谱反演叶片生理参数模型的最优方法。 结果表明: 不同光温环境下玉米的高光谱特性在整体上变化趋势一致, 但仍存在差异, 在500~700 nm波段内, 光谱反射率的升高表明光强的增强; 在760~900 nm波段内, 光谱反射率的升高表明温度的增强; 且光温胁迫环境的变化, 均可反映在高光谱特性上, 波段760~900 nm内光谱的反射率在高温胁迫环境下较高, 在弱光胁迫环境下较低, 在低温胁迫环境下反射率显著降低; 所构建的SPAD和Fv/Fm的反演模型中, 建模最优方法为PLS-MSC-SG, 模型验证集相关系数分别为0.958和0.976, 训练集相关系数分别为0.979和0.995。 模型的预测性精度较高, 表明利用高光谱技术, 可以实现光温环境胁迫下玉米植株的定量监测, 提高田间精细化管理水平, 为玉米优质高产的智能化管理提供参考依据。
玉米苗期 光温耦合 高光谱数据 环境胁迫 Corn seedling Light-temperature coupling Hyperspectral data Environmental stress 
光谱学与光谱分析
2021, 41(11): 3545
作者单位
摘要
吉林大学生物与农业工程学院, 吉林 长春 130022
叶绿素含量的准确获取及预测可为作物种植的精准化管理提供理论依据。 利用最优光谱指数建立大豆叶绿素含量反演模型, 以大豆花芽分化期叶片为研究对象, 获取高光谱和叶绿素含量数据。 首先构建了7种与叶绿素含量相关的典型光谱指数, 分别为比值指数(RI)、 差值指数(DI)、 归一化差值植被指数(NDVI)、 修正简单比值指数(mSR)、 修正归一化差值指数(mNDI)、 土壤调节植被指数(SAVI)和三角形植被指数(TVI), 并对原始高光谱进行一阶微分(FD)处理, 随后分别对原始和一阶微分高光谱在全光谱波长范围内两两组合所有波长, 进行14个光谱指数的计算。 再采用相关矩阵法进行最优光谱指数的提取, 将所有波长组合计算出的光谱指数与叶绿素含量进行相关性分析, 以相关系数最大值为指标, 提取出14组最优的波长组合, 并进行对应光谱指数值的计算作为最优光谱指数。 最后将最优光谱指数划分为3组模型输入变量, 分别与偏最小二乘回归(PLS)、 最小二乘支持向量机回归(LSSVM)和套索算法LASSO回归3种方法组合建模并对比分析, 以决定系数R2c, R2p和均方根误差RMSEC, RMSEP作为模型评价指标, 最终优选出精度最高的大豆叶片绿素含量反演模型。 结果表明: 14组最优光谱指数波长组合分别为RI(728, 727), DI(735, 732), NDVI(728, 727), mSR(728, 727), mNDI(728, 727), SAVI(728, 727), TVI(1 007, 708), FDRI(727, 708), FDDI(727, 788), FDNDVI(726, 705), FDmSR(726, 705), FDmNDI(726, 705), FDSAVI(727, 788)和FDTVI(760, 698), 相关系数最大值rmax均大于0.8。 建立最优模型的方法为输入变量为一阶微分光谱指数(组合2)与LSSVM组合的建模方法, 所建模型的R2c=0.751 8, R2p=0.836 0, RMSEC=1.361 2, RMSEP=1.220 4, 表明模型精度较高, 可为大面积监测大豆的生长状态提供参考。
大豆 最优光谱指数 叶绿素含量 反演模型 Soybean Optimal spectral index Chlorophyll content Inversion model 
光谱学与光谱分析
2021, 41(6): 1912
作者单位
摘要
吉林大学生物与农业工程学院, 吉林 长春 130022
大气中的颗粒物不仅影响人类生活, 还影响植物的光合作用、 生长发育和产量品质。 实现了颗粒物污染环境的人工模拟, 并对采收期的小白菜、 生菜、 小油菜三种叶菜进行颗粒物作用试验, 获取叶片的光合生理信息和高光谱数据, 基于高光谱技术和植物表型分析叶菜对颗粒物的响应机理, 研究叶菜的光合特性和光谱特征对颗粒物污染的响应情况。 结果表明: 以颗粒物作为唯一差别条件下, 三种叶菜叶片的高光谱曲线整体趋势相同, 在可见光波段内试验组反射率增加最大, 红边位置发生蓝移, 小油菜对颗粒物的作用最敏感, 小白菜吸附颗粒物的能力最强。 分别比较三种叶菜的净光合速率与叶片原始光谱、 一阶导数光谱的相关性, 利用相关分析法提取三种叶菜的敏感波段, 用原始光谱、 FD、 MSC和相关分析法提取特征波长; 比较10个高光谱特征参数及4个植被指数与净光合速率的相关系数, 选出敏感光谱特征参数和植被指数, 即生菜的Dr, SDr, SDr/SDb和SDr/Sdy, 小白菜的SDr, Dy, NIRRP, (SDr-SDy)/(SDr+SDy)以及小油菜的λr, SDy, (SDr-SDy)/(SDr+SDy)。 用ln对数运算、 多项式函数以及几种组合方法建立三种叶菜叶片的净光合速率定量反演模型, 其中, 预处理方法采用SG, FD, SD和MSC, 建模方法采用CLS, PLS, PCR和SMLR。 以相关系数为模型评价指标, 最终确定FD+SG+PLS方法是建立生菜和小白菜净光合速率反演模型的最优方法, FD+SG+MSC+SMLR方法是建立小油菜净光合速率反演模型的最优方法。 所建模型可为今后颗粒物污染环境下的模型修正提供参考, 具有实用性。 研究结果为利用高光谱技术研究叶菜类蔬菜在颗粒物污染环境下的诊断与分析提供理论依据, 为设施农业蔬菜的病害预警、 生理信息监测、 设施环境的净化和管控提供新思路。
颗粒物 高光谱 叶菜 净光合速率 反演模型 Particle matters Hyperspectral Leaf vegetable PM2.5 Net photosynthetic rate Inversion model PM2.5 
光谱学与光谱分析
2021, 41(1): 236
作者单位
摘要
吉林大学生物与农业工程学院, 吉林 长春 130022
生理信息的准确获取及预测可为种植的精细化管理提供依据。 传统的大豆生理信息反演方法检测效率低、 操作过程繁琐且多为有损检测。 利用高光谱技术建立大豆生理信息的快速无损反演方法。 以大豆开花结荚期叶片为研究对象, 在2个日期(D1和D2)获取高光谱、 叶绿素含量、 净光合速率和光合有效辐射数据。 首先分别采用多元散射校正(MSC)、 标准正态变量变换(SNV)、 一阶导数(FD)、 二阶导数(SD)、 Savitzky-Golay平滑(SG)、 MSC-SG-FD、 MSC-SG-SD、 SNV-SG-FD和SNV-SG-SD共9种方法对原始光谱数据进行预处理, 随后结合偏最小二乘法(PLS)建立全波段模型, 比较分析, 选出最优预处理方法。 再分别利用竞争性自适应权重取样法(CARS)、 连续投影法(SPA)和相关系数法(CC)对特征波长进行筛选提取。 最后将优选出的预处理方法与特征波长变量进行PLS建模并对比分析, 以校正集和预测集相关系数RcRp为模型评价指标, 最终优选出与大豆生理信息相关性最高的反演模型。 结果表明: 采用MSC-SG-FD预处理后建立的叶绿素含量全波段PLS模型的Rc和Rp最高, 分别为0.909和0.882(D1), 0.909和0.880(D2), 采用SNV-SG-FD预处理后建立的光能利用率全波段PLS模型的RcRp最高, 分别为0.913和0.894, 0.902和0.869, 与原始及其他预处理后建立的模型相比表现出最高的模型性能特征。 进一步对比3种特征波长提取方法的建模, 发现SPA法筛选出的变量能将叶绿素含量反演模型的建模变量数由512个压缩至20个(D1)和23个(D2), 变量压缩率高达96.09%和95.51%, 同时能将光能利用率反演模型的建模变量数压缩至27个和37个, 变量压缩率高达94.73%和92.77%。 最终得出反演叶绿素含量的最优建模方法为MSC-SG-FD-SPA-PLS, Rc值为0.944(D1)和0.941(D2), Rp值为0.911和0.903, 反演光能利用率的最优建模方法为SNV-SG-FD-SPA-PLS, Rc值为0.929(D1)和0.925(D2), Rp值为0.912和0.907, 所建模型精度较高, 可为大面积检测大豆生理信息提供技术支持。
高光谱 大豆 生理信息 特征波长 反演模型 Hyperspectral Soybean Physiological information Characteristic wavelength Inversion model 
光谱学与光谱分析
2020, 40(11): 3542
作者单位
摘要
1 吉林大学 生物与农业工程学院, 吉林 长春 130022
2 吉林大学 电子科学与工程学院, 吉林 长春 130012
为了实现对火灾的早期探测, 设计了一种高精度、高灵敏度CO传感器。该传感器以激射波长的为2.33 μm的连续型分布反馈激光器为光源。采用波长调制光谱(WMS)技术与一次谐波量化的二次谐波检测方法相结合的研究手段, 对典型环境压力下复杂、重叠的光谱吸收特征进行分离, 从而实现了良好的选择性和较高的灵敏度。基于Allan Werle方差的系统长期稳定性评估分析表明, 系统的检测限(LoD)为1.18 μL/L; 当积分时间达到 205 s时, 系统能够实现0.08 μL/L的测量精度。最后, 纸、棉花以及松木等容易产生阴燃的可燃物燃烧实验表明, 所研制的传感器具有良好的早期火灾探测能力。
火灾探测 一氧化碳(CO) 分布反馈激光器 波长调制光谱 fire detection carbon monoxide Distribution Feedback (DFB) laser Wavelength Modulation Spectroscopy (WMS) 
光学 精密工程
2018, 26(8): 1876
作者单位
摘要
1 吉林大学 电子科学与工程学院, 集成光电子学国家重点联合实验室吉林大学实验区, 长春 130012
2 吉林大学 生物与农业工程学院, 长春, 130022
为了满足基于室温连续量子级联激光器(QCL)的中红外气体检测系统的需求, 研制了板级量子级联激光器的驱动电路以及谐波锁相放大电路。通过信号发生电路产生高精度的直流偏置信号、低频锯齿波扫描信号和高频正弦波调制信号, 控制激光器的工作电流, 进而扫描/调制激光器的输出波长; 为了探测痕量气体吸收光谱的二次谐波信号, 并获得较高的信噪比, 研制了锁相放大电路, 主要包括倍频电路、正交转换电路和数据转换电路; 为了提高系统的稳定性和可靠性, 研制了高稳定性的线性供电电路以及保护电路.采用中科院半导体所研制的波长为4.76 μm的QCL作为光源, 开展了电学系统的功能验证实验以及气体检测实验.实验结果表明: QCL驱动电路线性度为0.006 3%, 长期电流稳定度为5.0×10-5, QCL光强稳定度为5.07×10-4; 锁相放大器系统具有较高的稳定性和较低的误差, 一次谐波的最大误差在2.4%以内, 二次谐波的最大误差在5.5%以内.通过动态配气方式开展了低浓度一氧化碳(CO)气体检测实验, 在0~100 ppm范围内, 二次谐波信号的幅值与CO气体浓度具有较高的线性度(拟合优度>0.99), 表明所研制的电学系统具有良好的稳定性和可靠性, 为中红外CO气体的检测提供了安全可靠的保障.
光电子学 中红外 驱动电路 锁相放大 量子级联激光器 气体检测 Optoelectronics Mid-infrared Driving circuit Lock-in amplifier Quantum cascade laser Gas detection 
光子学报
2018, 47(4): 0423001
作者单位
摘要
1 吉林大学, 集成光电子学国家重点联合实验室, 电子科学与工程学院, 吉林 长春 130012
2 吉林大学, 国家地球物理探测仪器工程技术研究中心, 仪器科学与电气工程学院, 吉林 长春 130061
根据一氧化碳(CO)气体分子在4.7 μm处的基频吸收特性, 使用中心波长为4.75 μm的量子级联激光器(QCL)和多反射气体吸收气室(MGC)设计了一种新型CO传感器。 该仪器使用可在室温脉冲方式下工作并具有热电制冷功能的QCL, 通过对其温度和注入电流进行调节, 最终使得出射光波长定位在CO基频吸收带的一根强吸收线(2 103 cm-1)。 与此同时, 使用有效光程为16米的新型MGC(40 cm长, 800 ml采样容积)和液氮冷却碲镉汞中红外探测器, 有效提高了系统的响应灵敏度。 此外, 系统中配合使用了参考气室和空间滤波光学结构, 有效地改善了入射光束的质量, 降低了由光源的不稳定而产生的噪声, 进一步提高了系统的检测灵敏度。 在实验室条件下对不同浓度的CO气体进行多次重复检测, 结果显示, 该仪器工作稳定, 按信噪比为1计算, 可实现对一氧化碳气体的检测下限为5 μmol·mol-1。
一氧化碳 量子级联激光器 多反射气体吸收气室 空间滤波 Carbon Monoxide Quantum cascaded laser Multi-pass gas cell Spatial filtering 
光谱学与光谱分析
2016, 36(5): 1308
李春光 1,*党敬民 1李健 1,2付丽 1[ ... ]王一丁 1
作者单位
摘要
1 吉林大学, 集成光电子学国家重点联合实验室, 电子科学与工程学院, 吉林 长春 130012
2 吉林农业大学信息技术学院, 吉林 长春 130118
3 吉林大学, 国家地球物理探测仪器工程技术研究中心, 仪器科学与电气工程学院, 吉林 长春 130061
根据中红外光谱吸收原理, 利用甲烷(CH4)气体分子在7.5 μm处的基频吸收特性, 设计了一种基于量子级联激光器(QCL)和新型多反射长光程气体吸收气室(MPC)的甲烷气体传感器。 该仪器使用了可进行热电冷却、 工作在脉冲方式下、 中心波长为7.5 μm的QCL, 通过在室温条件下调节其注入电流(500 mA~1.6 A调节范围), 其出射光波长可以扫过CH4(1 332.8 cm-1)气体吸收线。 同时使用了一种紧凑型MPC(40 cm长, 800 mL采样容积), 使得系统有效总光程达到16 m。 此外, 系统中使用了参考气室, 并加入了空间滤波光学结构以满足MPC对入射光束的要求, 配合差分吸收光谱检测原理, 有效地改善了光束质量, 降低了由光源波动引起的噪声, 提高了仪器的检测灵敏度。 通过对不同浓度的甲烷气体进行多次检测, 该仪器的稳定性能良好, 按信噪比为1计算, 可实现对甲烷气体的检测下限为1 μmol·mol-1。
甲烷 量子级联激光器 多反射气体吸收气室 空间滤波 差分吸收 Methane Quantum cascaded laser Multi-pass gas cell Spatial filtering Differential optical absorption 
光谱学与光谱分析
2016, 36(5): 1291

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!