作者单位
摘要
北京化工大学 信息科学与技术学院,北京 100029
为了实现CO2气体同位素的高性能检测,研制了高精度、高稳定性的多通池温度、压强控制系统。采用柔性PCB作为加热片包覆圆柱形多通池。考虑到温度控制系统的加热速率,外层包覆保温棉作为隔热装置,使得整个温度控制系统能实现快速加热,且能够保持温度的长时间稳定。采用铂电阻PT1000温度传感器对多通池温度进行精确采集,主控制器通过PWM信号,调控柔性PCB加热膜的发热功率,从而实现温度的闭环控制。压强控制系统方面,采用压强传感器连接于多通池前、后端,检测多通池内部气压,主控制器通过PWM信号,调控多通池前、后端比例阀导通状态,从而实现压强的闭环控制。结果表明,温度控制范围为18.48~42 ℃,温度控制精度为±0.08 ℃。多通池压强为60 Torr(1 Torr ≈ 133.322 Pa)时,控制精度为±0.04 Torr。该系统为红外CO2气体同位素的高性能检测提供可靠保障。
红外气体检测 CO2同位素 多通池温度 压强控制 加热膜 比例阀 infrared gas detection CO2 isotope temperature of multi-pass gas cell pressure control; heating film proportional valve 
红外与激光工程
2020, 49(10): 20190525
作者单位
摘要
郑州工程技术学院 信息工程学院,河南 郑州 450044
为了实现CO2气体同位素的高性能检测,研制了高精度、高稳定性的激光红外多通池压强控制系统。硬件方面,采用压强传感器连接于多通池前、后端,检测多通池内部气压,主控制器通过PWM信号,调控多通池前、后端比例阀导通状态,从而实现压强的闭环控制。软件方面,采用Ziegier-Nichols工程整定方法,完成对PID 3个参数的确定。结果表明:多通池压强为60 Torr(1 Torr=133.322 Pa)时,控制精度为±0.04 Torr。试验中,利用研制的多通池压强控制系统对13CO212CO2气体分子在4.3 μm吸收光谱进行测量。随着气体压强从0.026~0.066 atm (1 atm= 101 325 Pa),13CO212CO2气体分子吸收光谱的峰值随着压强增大而增大,吸收光谱宽度也随着压强的增大而增大。同时,利用红外气体检测系统对CO2同位素丰度进行长达2 h的测量。CO2同位素丰度均值为?9.081‰,测量值在?8.351‰~?9.736‰之间波动,最大偏差值为0.73‰。可以证明:该系统为红外CO2气体同位素的高性能检测提供可靠保障。
红外气体检测 CO2同位素 多通池压强控制 Ziegler-Nichols工程整定方法 PID控制 infrared gas detection CO2 isotope pressure control of multi-pass gas cell Ziegler-Nichols engineering setting method PID control 
红外与激光工程
2020, 49(9): 20190551
作者单位
摘要
郑州工程技术学院 信息工程学院, 河南 郑州 450044
采用激光吸收光谱法可实现气体同位素丰度的探测, 由于待测气体吸收线的吸收系数会受待测气体温度的影响, 将直接影响气体同位素检测系统的精准度和稳定度, 文中设计并研制了一种高精度的多通池温度控制系统。硬件方面, 采用高精度PT1000铂电阻温度采集电路与聚酰亚胺电热膜加热装置, 构成了一个完整的闭环温度控制结构。软件方面, 采用Ziegier-Nichols工程整定方法对比例、积分、微分三个系数完成整定。针对被控对象结构复杂响应较慢引起超调量大问题, 采用积分分离比例-积分-微分控制算法, 使温度控制快速且无超调。利用该系统进行温度控制实验, 实验表明: 温度控制范围为18~42 ℃, 温度控制精度达到±0.08 ℃, 稳定时间位15 s,该系统具有精度高、响应快速、无超调的优点, 为激光气体同位素探测提供了可靠保障。
气体同位素检测 多通池 温度控制系统 积分分离PID控制算法 gas isotope detection multi-pass gas cell temperature control system integral separation PID control algorithm 
红外与激光工程
2019, 48(8): 0805006
作者单位
摘要
1 吉林大学仪器科学与电气工程学院, 国家地球物理探测仪器工程技术研究中心, 吉林 长春 130061
2 山西大学激光光谱研究所量子光学与光量子器件国家重点实验室, 山西 太原 030006
3 吉林大学电子科学与工程学院, 集成光电子学国家重点联合实验室, 吉林 长春 130012
4 吉林大学生物与农业工程学院, 吉林 长春 130022
根据乙烷气体分子在3.3 μm处的基频吸收特性, 使用中心波长为3.337 μm室温连续带间级联激光器(ICL)和有效光程为54.6 m密集光斑多通气体吸收气室(600 mL)研制了基于波长调制光谱技术(WMS)的乙烷传感器。 详细介绍了基于WMS和二次谐波(2f)探测技术的光谱吸收法气体检测原理, 给出了目标乙烷气体吸收线的遴选细节。 此项技术的使用减小了光功率漂移对系统的影响, 使得系统最低检测下限(MDL)和稳定性能得到提升。 结合原理框图, 通过光学和电学两个模块分别详细介绍了乙烷传感系统设计方案, 描述了自主研制的软、 硬件单元和商用仪器的使用及其型号供他人参考, 并给出传感器光学配置实物图。 而且, 为匹配激光波长调制与基于压力的吸收线宽, 对气压和调制深度进行优化, 研究了调制幅度对应2f信号峰值及调制幅度与调制深度的关系, 最终确定最优气压和调制深度分别为100 Torr和0.074 cm-1, 对应的调制信号幅度为~0.026 V。 此外, 基于优化后的气压和调制深度, 使用136.8 nmol·mol-1 乙烷标准气体进行了系统灵敏度估算。 详细介绍了ICL扫描调制信号、 锁相放大及数据采集单元的参数设置, 并给出示波器记录的扫描调制信号及2f信号波形图片。 通过对比DAQ采集的2f信号和背景噪声信号, 估算系统最低检测下限为33 nmol·mol-1。 最后, 使用9个不同浓度乙烷标准气体(20~400 nmol·mol-1)分别进行~5 min系统标定测试, 并列出了拟合曲线和拟合相关度等信息。 而且, 使用浓度为48 nmol·mol-1乙烷气体样品开展连续2 h系统稳定性测试并进行Allan-Werle 方差分析。 结果显示, 该系统工作稳定, 积分时间为4 s时, 乙烷气体检测灵敏度为~0.81 nmol·mol-1。 通过增加系统积分时间至63 s, 系统灵敏度可被提高至~0.36 nmol·mol-1。
乙烷 带间级联激光器 波长调制光谱 多反射气室 Ethane Interband cascade laser Wavelength modulation spectroscopy Multi-pass gas cell 
光谱学与光谱分析
2019, 39(3): 959
作者单位
摘要
1 吉林大学, 集成光电子学国家重点联合实验室, 电子科学与工程学院, 吉林 长春 130012
2 吉林大学, 国家地球物理探测仪器工程技术研究中心, 仪器科学与电气工程学院, 吉林 长春 130061
根据一氧化碳(CO)气体分子在4.7 μm处的基频吸收特性, 使用中心波长为4.75 μm的量子级联激光器(QCL)和多反射气体吸收气室(MGC)设计了一种新型CO传感器。 该仪器使用可在室温脉冲方式下工作并具有热电制冷功能的QCL, 通过对其温度和注入电流进行调节, 最终使得出射光波长定位在CO基频吸收带的一根强吸收线(2 103 cm-1)。 与此同时, 使用有效光程为16米的新型MGC(40 cm长, 800 ml采样容积)和液氮冷却碲镉汞中红外探测器, 有效提高了系统的响应灵敏度。 此外, 系统中配合使用了参考气室和空间滤波光学结构, 有效地改善了入射光束的质量, 降低了由光源的不稳定而产生的噪声, 进一步提高了系统的检测灵敏度。 在实验室条件下对不同浓度的CO气体进行多次重复检测, 结果显示, 该仪器工作稳定, 按信噪比为1计算, 可实现对一氧化碳气体的检测下限为5 μmol·mol-1。
一氧化碳 量子级联激光器 多反射气体吸收气室 空间滤波 Carbon Monoxide Quantum cascaded laser Multi-pass gas cell Spatial filtering 
光谱学与光谱分析
2016, 36(5): 1308
李春光 1,*党敬民 1李健 1,2付丽 1[ ... ]王一丁 1
作者单位
摘要
1 吉林大学, 集成光电子学国家重点联合实验室, 电子科学与工程学院, 吉林 长春 130012
2 吉林农业大学信息技术学院, 吉林 长春 130118
3 吉林大学, 国家地球物理探测仪器工程技术研究中心, 仪器科学与电气工程学院, 吉林 长春 130061
根据中红外光谱吸收原理, 利用甲烷(CH4)气体分子在7.5 μm处的基频吸收特性, 设计了一种基于量子级联激光器(QCL)和新型多反射长光程气体吸收气室(MPC)的甲烷气体传感器。 该仪器使用了可进行热电冷却、 工作在脉冲方式下、 中心波长为7.5 μm的QCL, 通过在室温条件下调节其注入电流(500 mA~1.6 A调节范围), 其出射光波长可以扫过CH4(1 332.8 cm-1)气体吸收线。 同时使用了一种紧凑型MPC(40 cm长, 800 mL采样容积), 使得系统有效总光程达到16 m。 此外, 系统中使用了参考气室, 并加入了空间滤波光学结构以满足MPC对入射光束的要求, 配合差分吸收光谱检测原理, 有效地改善了光束质量, 降低了由光源波动引起的噪声, 提高了仪器的检测灵敏度。 通过对不同浓度的甲烷气体进行多次检测, 该仪器的稳定性能良好, 按信噪比为1计算, 可实现对甲烷气体的检测下限为1 μmol·mol-1。
甲烷 量子级联激光器 多反射气体吸收气室 空间滤波 差分吸收 Methane Quantum cascaded laser Multi-pass gas cell Spatial filtering Differential optical absorption 
光谱学与光谱分析
2016, 36(5): 1291
谈图 1,*刘锟 1王贵师 1汪磊 1[ ... ]高晓明 1
作者单位
摘要
1 中国科学院安徽光学精密机械研究所大气物理化学研究室, 安徽 合肥 230031
2 法国滨海大学大气物理化学实验室, 法国 敦刻尔克 59140
利用量子级联激光器(QCL)结合新型小型化光学多通吸收池高灵敏度同时测量CO 和N2O 痕量气体。所用激光为工作在4.3 mm 附近的宽调谐、无跳模外腔量子级联激光器,激光在较短的时间内(1 s)连续波长扫描,并覆盖N2O(2203.73333 cm-1)和CO(2203.161 cm-1)两种分子的吸收谱线,从而实现对N2O 和CO 的同时测量。利用物理基长为12 cm 的新型小型化光学多通吸收池,探测光在吸收池内来回反射243次,有效光程达到29 m。利用波长调制吸收光谱和二次谐波探测技术实现了对N2O 和CO 的高灵敏度探测,测量系统的最低可探测浓度极限约为2.0×10-9(N2O)和1.7×10-9(CO)。
光谱学 光学多通池 量子级联激光 高灵敏度探测 
光学学报
2015, 35(2): 0230005

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!