作者单位
摘要
中国海洋大学 信息科学与工程学部 物理与光电工程学院,山东青岛266100
针对海洋水体及悬浮颗粒物吸收和散射所导致的水下显微图像的颜色信息失真问题,本文提出了一种改进的循环一致性对抗网络(Cycle-consistent Adversarial Network, CycleGAN)算法,实现对水下目标物图像的颜色校正。通过在原始水下降质图像和重构水下图像之间加入R、G、B三个通道的结构相似性(Structure Similarity Index Measure, SSIM)损失函数,度量二者图像之间的信息损失,进而实现R、G、B三个通道颜色的精准调控,不仅增强了CycleGAN网络的整体性能,也提高了生成器生成图像的质量。然后,利用水下多色自制标靶及天然矿石的显微图像组成的训练数据集对本文所提的改进网络进行训练,所得的模型可用于实际矿石样品表面的显微图像颜色校正。结果表明,本文所提的改进的CycleGAN算法较其它方法在颜色校正方面有着明显的优势。与传统的Retinex算法相比,处理后的图像峰值信噪比(Peak Signal-to-Noise Ratio, PSNR)和结构相似性指标分别提高41.85%、35.62%,而且,从主观视觉角度可发现经过校正的水下显微图像与空气中图像颜色相似度最高。综上,本文方法可以有效地对水下目标物图像进行颜色校正,并提升水下显微图像的质量,有望在海洋地质和海洋生物学方面得到应用。
海底深部微生物观测 水下显微成像 SSIM损失函数 CycleGAN 颜色校正 observation of microorganisms in deep seabed underwater microscopic imaging SSIM loss function CycleGAN color correction 
光学 精密工程
2022, 30(12): 1499
作者单位
摘要
拉曼光谱技术以多组分同时探测、 无需样品预处理等优势被用于多个领域, 但是较低的探测灵敏度制约了其更广泛的应用。 为了提高拉曼光谱技术气体探测的灵敏度, 文章报道了一种基于折叠近共心腔对气体拉曼信号进行增强的方法。 该方法通过向多次反射腔中心引入一片高反射率平面镜将腔体从中心处进行折叠, 使腔体中心处光束相互重叠以增加光线密度和光通量, 进而提高系统的探测灵敏度。 采用TracePro软件对不同模式下的多次反射腔进行光线追迹和通量分析(激光: 300 mW@532 nm, 镜面反射率: 99%@532 nm), 结果表明光腔折叠方式能够显著提高反射腔中心处的光通量。 折叠近共心腔在反射次数为68次的情况下, 光腰中心处光通量可达22.35 W, 约为近共心反射腔光通量的1.5倍左右。 进一步搭建了多次反射腔对模拟结果进行验证, 实验结果表明: 折叠近共心腔对拉曼信号信噪比增强效果最好, 约为49倍; 近共心腔次之为36倍; 是折叠共心腔为24倍; 最后是共心腔为17倍。 与未折叠的近共心腔相比, 采用折叠近共心腔采集的气体拉曼信号信噪比提高了约1.4倍。 根据该系统探测到的空气中的二氧化碳拉曼峰相对强度, 以三倍于噪声强度的信号作为检出限标准, 估算出该系统对于二氧化碳的检测限约为0.13 mg·L-1(66 ppm)。
拉曼光谱技术 气体探测 探测灵敏度 折叠近共心腔 Raman spectroscopy Gas detection Detection sensitivity Folded near-concentric cavity 
光谱学与光谱分析
2020, 40(11): 3390
作者单位
摘要
中国海洋大学光学光电子实验室, 山东 青岛 266100
海洋中碳循环研究对环境监测和资源探测有着重要意义, 其中研究海水中的碳酸盐又是研究碳循环的重要环节, 目前对海水中碳酸盐的测量没有直接的现场测量手段, 传统海水中碳酸盐的探测主要采用间接探测方法, 例如: 向海水中加入磷酸, 将海水中的碳酸盐转化为二氧化碳, 然后再对二氧化碳进行探测。 拉曼光谱作为一种可用于海水现场测量的技术, 具有对海水中碳酸盐直接检测的潜力, 但要在海洋探测中实际应用主要受限于灵敏度。 针对海水中碳酸盐的检测需求, 搭建了一套近共心腔液体拉曼光谱系统, 利用软件分别对反射率为99.66%(@532 nm)、 直径为25.4 mm的近共心腔的主要参数(腔镜的焦距、 液体样品池两端窗片的厚度及间距)进行了模拟和优化, 模拟结果显示: ①对直径为25.4 mm的腔镜, 焦距为25 mm时, 反射次数最多; ②对液体样品池光学窗片而言, 厚度越小, 样品池中心处的光斑越密集, 总光通量越大; ③液体样品池光学窗片距离越短, 样品池中心处的光斑越密集, 总光通量越大。 基于模拟结果对近共心腔液体拉曼光谱系统优化后, 在实验室配置了一系列浓度的碳酸氢根和碳酸根溶液进行测量, 并对光谱进行二次微分和高斯滤波预处理, 然后提取各浓度下碳酸根和碳酸氢根的峰强信息, 建立定标曲线。 结果显示: 碳酸根、 碳酸氢根的拉曼信号强度与其浓度之间线性关系良好, R2分别为0.994和0.998。 按照3倍信噪比计算系统对碳酸根和碳酸氢根检测限, 结果分别为0.06和0.38 mmol·L-1, 检测限低于海水中碳酸根和碳酸氢根浓度(海水中碳酸根浓度约为0.2 mmol·L-1, 碳酸氢根浓度约为2.0 mmol·L-1)。 该系统灵敏度比目前报道的海洋现场探测拉曼光谱系统提高了10倍以上, 为下一步海水中碳酸根和碳酸氢根的现场探测提供了可能。
拉曼光谱 近共心腔系统 模拟优化 碳酸根 碳酸氢根 Raman spectroscopy Near-concentric cavity system System optimization CO2-3/HCO-3 
光谱学与光谱分析
2019, 39(4): 1086
作者单位
摘要
中国海洋大学光学光电子实验室, 山东 青岛 266100
水下激光诱导击穿光谱技术(LIBS)和水下激光拉曼光谱技术(Raman)已在深海成功获得应用, 这两种技术探测对象互补、器件类似, 两者联合探测可更好的进行深海研究。 针对此需求研发了一套LIBS-Raman光谱联合水下原位探测原理样机, 整个系统集成于L790 mm×Φ270 mm的舱体内, 在舱体前端有光学窗口和水密插头, 舱体内部主要包括脉冲激光器、光谱仪、 嵌入式计算机和供电转换装置, 甲板控制终端通过水密电缆实现对系统的供电、 控制和数据采集。 该联合系统采用一台双波长脉冲激光器同时作为LIBS和拉曼光谱的激发光源, LIBS采用1 064 nm波长, 拉曼光谱采用532 nm波长。 双波长激光器发出的光束经分光镜分为两路, 经过后向散射光路收集的两路信号分别进入两个小型光纤光谱仪进行分光探测, LIBS采用AvaSpec-ULS2048光谱仪, 拉曼光谱采用QE 65000光谱仪。 利用搭建的原理样机在青岛近海进行水下原位探测, 在实验室开展了水中固体靶的探测, 实验结果证明了LIBS-Raman联合光谱探测装置的可行性。 下一步将优化系统并开展深海探测应用。
激光诱导击穿光谱 激光拉曼光谱 光谱联合 水下原位 LIBS Raman Combined detection In-situ 
光谱学与光谱分析
2018, 38(12): 3753
作者单位
摘要
中国海洋大学 光学光电子实验室, 山东 青岛 266100
为了使水下拉曼光谱系统更加易于搭载和布放, 并进一步提高其探测能力, 研制了一套探头式的小型高灵敏度水下拉曼光谱系统并对其探测能力进行了评估。通过优化结构设计和严格的器件选型, 系统的体积和重量得到了有效的控制, 其主体舱尺寸为Φ260 mm×L795 mm, 重量为548 N, 仅为国际上报道的首台深海拉曼光谱系统(DORISS)质量的三分之一。将激光器从主体舱移至探头舱, 有效避免了传统光学探头中激发光耦合进入光纤时产生的耦合损失以及激光在传输过程中引起的杂散光干扰。系统采用了300 mW能量可调激光器配合高衍射效率的体相位全息光栅和半导体制冷CCD, 有效提高了探测灵敏度。实验结果表明, 系统对于硫酸根的检测限在0.4 mmol·L-1以下, 是DORISS探测能力的4倍, 同时能够实现对水下矿石种类的原位鉴定。该深海拉曼光谱系统在海洋原位探测方面展现出了良好的应用前景。
拉曼光谱 水下原位探测 小型化 高灵敏度 Raman spectroscopy underwater in-situ detection compact high sensitivity 
光学 精密工程
2018, 26(1): 8

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!